Download Free Concrete Engineering Book in PDF and EPUB Free Download. You can read online Concrete Engineering and write the review.

The Concrete Construction Engineering Handbook, Second Edition provides in depth coverage of concrete construction engineering and technology. It features state-of-the-art discussions on what design engineers and constructors need to know about concrete, focusing on - The latest advances in engineered concrete materials Reinforced concrete construction Specialized construction techniques Design recommendations for high performance With the newly revised edition of this essential handbook, designers, constructors, educators, and field personnel will learn how to produce the best and most durably engineered constructed facilities.
DVD features highlights from the conference held at Columbia University.
A comprehensive guide to modern-day methods for earthquake engineering of concrete dams Earthquake analysis and design of concrete dams has progressed from static force methods based on seismic coefficients to modern procedures that are based on the dynamics of dam–water–foundation systems. Earthquake Engineering for Concrete Dams offers a comprehensive, integrated view of this progress over the last fifty years. The book offers an understanding of the limitations of the various methods of dynamic analysis used in practice and develops modern methods that overcome these limitations. This important book: Develops procedures for dynamic analysis of two-dimensional and three-dimensional models of concrete dams Identifies system parameters that influence their response Demonstrates the effects of dam–water–foundation interaction on earthquake response Identifies factors that must be included in earthquake analysis of concrete dams Examines design earthquakes as defined by various regulatory bodies and organizations Presents modern methods for establishing design spectra and selecting ground motions Illustrates application of dynamic analysis procedures to the design of new dams and safety evaluation of existing dams. Written for graduate students, researchers, and professional engineers, Earthquake Engineering for Concrete Dams offers a comprehensive view of the current procedures and methods for seismic analysis, design, and safety evaluation of concrete dams.
Fresh concrete is generally featured in publications on concrete technology where the focus is often on fundamental rheology or diverse research methods, or the standards describe the tests but do not provide practical advice on interpretation of the results. This book aims to fill the gap between highly scientific and fundamental works and the many fragmented test specifications. It summarises the existing knowledge on the properties of fresh concrete in a form accessible to practicing engineers and concrete technologists. It includes a manual of practical tests which cover both the standard tests in major countries and new tests specifically applicable to site testing. The testing equipment required and the procedures are described in sufficient detail for the tests to be carried out, with references to selected national standards when compliance with specific conditions applicable in those countries is required. Particular attention is paid to properties of special fresh concrete mixes which are increasingly used in practical construction. The work will be of interest to engineers and others involved in the research, development, design and execution of concrete construction, including those working in EEC countries.
One marker of the majesty of ancient Rome is its surviving architectural legacy, the stunning remains of which are scattered throughout the circum-Mediterranean landscape. Surprisingly, one truly remarkable aspect of this heritage remains relatively unknown. There exists beneath the waters of the Mediterranean the physical remnants of a vast maritime infrastructure that sustained and connected the western world’s first global empire and economy. The key to this incredible accomplishment and to the survival of structures in the hostile environment of the sea for two thousand years was maritime concrete, a building material invented and then employed by Roman builders on a grand scale to construct harbor installations anywhere they were needed, rather than only in locations with advantageous geography or topography. This book explains how the Romans built so successfully in the sea with their new invention. The story is a stimulating mix of archaeological, geological, historical and chemical research, with relevance to both ancient and modern technology. It also breaks new ground in bridging the gap between science and the humanities by integrating analytical materials science, history, and archaeology, along with underwater exploration. The book will be of interest to anyone interested in Roman architecture and engineering, and it will hold special interest for geologists and mineralogists studying the material characteristics of pyroclastic volcanic rocks and their alteration in seawater brines. The demonstrable durability and longevity of Roman maritime concrete structures may be of special interest to engineers working on cementing materials appropriate for the long-term storage of hazardous substances such as radioactive waste. A pioneering methodology was used to bore into maritime structures both on land and in the sea to collect concrete cores for testing in the research laboratories of the CTG Italcementi Group, a leading cement producer in Italy, the University of Berkeley, and elsewhere. The resulting mechanical, chemical and physical analysis of 36 concrete samples taken from 11 sites in Italy and the eastern Mediterranean have helped fill many gaps in our knowledge of how the Romans built in the sea. To gain even more knowledge of the ancient maritime technology, the directors of the Roman Maritime Concrete Study (ROMACONS) engaged in an ambitious and unique experimental archaeological project – the construction underwater of a reproduction of a Roman concrete pier or pila. The same raw materials and tools available to the ancient builders were employed to produce a reproduction concrete structure that appears to be remarkably similar to the ancient one studied during ROMACON’s fieldwork between 2002-2009. This volume reveals a remarkable and unique archaeological project that highlights the synergy that now exists between the humanities and science in our continuing efforts to understand the past. It will quickly become a standard research tool for all interested in Roman building both in the sea and on land, and in the history and chemistry of marine concrete. The authors also hope that the data and observations it presents will stimulate further research by scholars and students into related topics, since we have so much more to learn in the years ahead.
Nine chapters by a group of authors run from site investigation to assessment, repair, thermal response, structural types, and joints and substructures.
The most critical state of a structure's lifetime is during construction; many more disasters occur during construction than after projects have been completed. This book helps readers to determine construction loads; understand performance criteria during construction; prevent construction delays; maintain structural strength and stability; find relevant codes and standards; learn methods of shoring, reshoring, bracing and guying, and completing other temporary work; spot potential hazards; eliminate construction-created structural disaster; and maximize site safety. The book also covers concrete frame analysis and provides comprehensive treatment of topics such as construction procedures and shoring scheduling. Concrete Buildings: Analysis for Safe Construction also features a diskette that contains the computer program, SHORING2, a menu-driven, user-friendly program capable of calculating the loads imposed on shores, reshores, and slabs at every state of construction on high-rise reinforced concrete buildings. The program can also assess safety at each stage of construction. Concrete Buildings: Analysis for Safe Construction's "back to basics" approach, realistic detailed worked examples, and emphasis on safety through the use of computer programs, will benefit structural engineers, contractors, inspectors, construction managers, building officials, and construction safety specialists. The book is an important guide for safe analysis of concrete buildings during construction.
Everything civil and structural engineers in California need to prepare for the seismic design topics of the Special Civil Engineering Exam and California Structural Engineering Exam. This guide emphasizes methods that lead to the quickest and simplest solution to any problem.
Concrete can be a pretty unforgiving building material. Ask any of the builders who come into your store and they'll usually have a horror story to share about a concrete job gone awry and how much it cost them.Basic Concrete Engineering for Builders may be one of the only books available today that explains how to avoid common concrete problems with foundations, slabs, columns, and more. It gives step-by-step explanations on how to plan, mix, reinforce and pour concrete. It also shows how to design concrete for buildings -- the calculations, the tables, and the rules of thumb, with examples and insight into the working knowledge that every builder needs.Most builders don't end up specifying requirements for structural concrete work. That's the job of an engineer. But most builders working with concrete need a good general understanding of the concepts behind structural concrete engineering. They need to know about: surveying, foundation layout, formwork, form materials, forming problems, aggregates, admixtures, reinforcing, mixing and placing requirements, pumping, creating joints, curing, and testing the concrete's strength. They need to know basic design for walls, columns, slabs, slabs-on-grade, one- and two-way slabs, elevated slabs, equipment pads, pre-cast walls, retaining walls, basement walls, crib walls, reinforcing beams and girders, driveways, sidewalks, curbs, catch basins, manholes and other miscellaneous structures, as well as how to calculate the reinforcement needed for these structural components. You'll find all this information in this book and on the software included in the back.Includes Free Engineering Software: A CD-ROM is included with easy-to-useengineering software for designing simple concrete elements for beams, slabs and columns.