Download Free Concrete Buildings Analysis For Safe Construction Book in PDF and EPUB Free Download. You can read online Concrete Buildings Analysis For Safe Construction and write the review.

The most critical state of a structure's lifetime is during construction; many more disasters occur during construction than after projects have been completed. This book helps readers to determine construction loads; understand performance criteria during construction; prevent construction delays; maintain structural strength and stability; find relevant codes and standards; learn methods of shoring, reshoring, bracing and guying, and completing other temporary work; spot potential hazards; eliminate construction-created structural disaster; and maximize site safety. The book also covers concrete frame analysis and provides comprehensive treatment of topics such as construction procedures and shoring scheduling. Concrete Buildings: Analysis for Safe Construction also features a diskette that contains the computer program, SHORING2, a menu-driven, user-friendly program capable of calculating the loads imposed on shores, reshores, and slabs at every state of construction on high-rise reinforced concrete buildings. The program can also assess safety at each stage of construction. Concrete Buildings: Analysis for Safe Construction's "back to basics" approach, realistic detailed worked examples, and emphasis on safety through the use of computer programs, will benefit structural engineers, contractors, inspectors, construction managers, building officials, and construction safety specialists. The book is an important guide for safe analysis of concrete buildings during construction.
A PRACTICAL GUIDE TO REINFORCED CONCRETE STRUCTURE ANALYSIS AND DESIGN Reinforced Concrete Structures explains the underlying principles of reinforced concrete design and covers the analysis, design, and detailing requirements in the 2008 American Concrete Institute (ACI) Building Code Requirements for Structural Concrete and Commentary and the 2009 International Code Council (ICC) International Building Code (IBC). This authoritative resource discusses reinforced concrete members and provides techniques for sizing the cross section, calculating the required amount of reinforcement, and detailing the reinforcement. Design procedures and flowcharts guide you through code requirements, and worked-out examples demonstrate the proper application of the design provisions. COVERAGE INCLUDES: Mechanics of reinforced concrete Material properties of concrete and reinforcing steel Considerations for analysis and design of reinforced concrete structures Requirements for strength and serviceability Principles of the strength design method Design and detailing requirements for beams, one-way slabs, two-way slabs, columns, walls, and foundations
With superior fire resistance, strength, and a long service life, concrete is the most widely used construction material in the world. A sustainable material, concrete is also easily and affordably reused and rehabilitated. The first book to provide an overview of sustainability and concrete, Green Building with Concrete: Sustainable Design and Construction surveys the material’s history in the green building movement and presents state-of-the-art methodologies and best practices. From the manufacturing of cement to the rehabilitation of concrete, this comprehensive book explains how concrete can be used for sustainable design and construction. It offers insight into new technological and social developments guiding the introduction of green buildings and examines the attributes that concrete has to offer the green building movement. The text also highlights research on economic analysis—particularly life cycle costing—to provide a full picture of the economic benefits of concrete. Expert contributors from around the world offer diverse viewpoints on global sustainability. Topics covered include: Principles of sustainable design Benefits of concrete’s thermal mass Mitigation of urban heat island effects Surface runoff and the application of pervious concrete for sidewalks and parking areas Reduction of construction waste Leadership in energy and environmental design (LEED) standards Emphasizing environmental impact and occupational and consumer health and safety, this book explains how to make the most of concrete in sustainable design. Written for university and concrete industry continuing education courses, it also serves as a reference for building owners and industry professionals who recognize the value of green building.
First published in 1968, Jacob Feld's Construction Failure has longbeen considered the classic text on the subject. Retaining all ofthe key components of Feld's comprehensive exploration of the rootcauses of failure, this Second Edition addresses a multitude ofimportant industry developments to bring this landmark work up todate for a new generation of engineers, architects, andstudents. In addition to detailed coverage of current design tools,techniques, materials, and construction methods, ConstructionFailure, Second Edition features an entire chapter on theburgeoning area of construction litigation, including a thoroughexamination of alternative dispute resolution techniques. Like theoriginal, this edition discusses technical and procedural failuresof many different types of structures, but is now supplemented withnew case studies to illustrate the dynamics of failure in actiontoday. Jacob Feld knew thirty years ago that in order to learn from ourmistakes, we must first acknowledge and understand them. With thisrevised volume, Kenneth Carper has ensured that Feld'snow-posthumous message will continue to be heard for years tocome. Jacob Feld's comprehensive work on failure analysis has now beenskillfully amended to address current design and constructiontools, materials, and practices. Building on the first edition'speerless examination of the causes and lessons of failure,Construction Failure, Second Edition provides you with expandedcoverage of: * Technical, procedural, structural, and nonstructural failures * Natural hazards, earthworks, soil and foundation problems, andmore * Reinforced, precast and prestressed concrete, steel, timber,masonry, and other materials * Responsibility and litigation concerns, dispute avoidance, andalternative dispute resolution techniques * Construction safety issues * Many different types of structures, including dams andbridges Construction Failure has as much to teach us today as it did thirtyyears ago. This revised volume is an essential resource for designengineers, architects, construction managers, lawyers, and studentsin all of these fields.
The second edition of a bestseller, Safety Differently: Human Factors for a New Era is a complete update of Ten Questions About Human Error: A New View of Human Factors and System Safety. Today, the unrelenting pace of technology change and growth of complexity calls for a different kind of safety thinking. Automation and new technologies have resu
As software skills rise to the forefront of design concerns, the art of structural conceptualization is often minimized. Structural engineering, however, requires the marriage of artistic and intuitive designs with mathematical accuracy and detail. Computer analysis works to solidify and extend the creative idea or concept that might have started o
Deterministic safety analysis is an important tool for confirming the adequacy and efficiency of provisions within the defence in depth concept for the safety of nuclear power plants (NPPs). IAEA Safety Standards Series No. NS-R-1.2 and Safety Reports Series No. 23 recommend, as one of the options for demonstrating the inclusion of adequate safety margins, the use of best estimate computer codes with realistic input data in combination with the evaluation of uncertainties in the calculation results. The evaluation of uncertainties is an issue of considerable complexity, and this Safety Report has been developed to complement the existing publications. It provides more detailed information on the methods available for the evaluation of uncertainties in deterministic safety analysis of NPPs and practical guidance in the use of these methods.
This book presents the results of a Japanese national research project carried out in 1988-1993, usually referred to as the New RC Project. Developing advanced reinforced concrete building structures with high strength and high quality materials under its auspices, the project aimed at promoting construction of highrise reinforced concrete buildings in highly seismic areas such as Japan. The project covered all the aspects of reinforced concrete structures, namely materials, structural elements, structural design, construction, and feasibility studies. In addition to presenting these results, the book includes two chapters giving an elementary explanation of modern analytical techniques, i.e. finite element analysis and earthquake response analysis.
The recent worldwide boom in industrial construction and the corresponding billions of dollars spent every year in industrial, oil, gas, and petrochemical and power generation project, has created fierce competition for these projects. Strong management and technical competence will bring your projects in on time and on budget. An in-depth explorat
The first complete guide to using the Stochastic Finite Element Method for reliability assessment Unlike other analytical reliability estimation techniques, the Stochastic Finite Element Method (SFEM) can be used for both implicit and explicit performance functions, making it a particularly powerful and robust tool for today's engineer. This book, written by two pioneers in SFEM-based methodologies, shows how to use SFEM for the reliability analysis of a wide range of structures. It begins by reviewing essential risk concepts, currently available risk evaluation procedures, and the use of analytical and sampling methods in estimating risk. Next, it introduces SFEM evaluation procedures, with detailed coverage of displacement-based and stress-based deterministic finite element approaches. Linear, nonlinear, static, and dynamic problems are considered separately to demonstrate the robustness of the methods. The risk or reliability estimation procedure for each case is presented in different chapters, with theory complemented by a useful series of examples. Integrating advanced concepts in risk-based design, finite elements, and mechanics, Reliability Assessment Using Stochastic Finite Element Analysis is vital reading for engineering professionals and students in all areas of the field.