Download Free Concrete Bridge Deck Condition Assessment And Improvement Strategies Book in PDF and EPUB Free Download. You can read online Concrete Bridge Deck Condition Assessment And Improvement Strategies and write the review.

Although the substructures and superstructures of bridges in Utah are in relatively good structural condition, the bridge decks are experiencing observable deterioration due to the routine application of deicing salts and repeated freeze-thaw cycling. This manual describes condition assessment methods and threshold values that may be used to determine whether rehabilitation or replacement of a given bridge deck is more appropriate when the severity and extent of deterioration warrant deck improvement. Threshold values given in the manual are based on a questionnaire survey conducted of state departments of transportation nationwide, as well as on standards and guidelines published by the American Society for Testing and Materials, American Association of State Highway and Transportation Officials, and Strategic Highway Research Program.
" TRB's second Strategic Highway Research Program (SHRP 2) Report S2-R06A-RR-1: Nondestructive Testing to Identify Concrete Bridge Deck Deterioration identifies nondestructive testing technologies for detecting and characterizing common forms of deterioration in concrete bridge decks.The report also documents the validation of promising technologies, and grades and ranks the technologies based on results of the validations.The main product of this project will be an electronic repository for practitioners, known as the NDToolbox, which will provide information regarding recommended technologies for the detection of a particular deterioration. " -- publisher's description.
Bridges are key elements in the US transportation system. There are more than six hundred thousand bridges on the highway system in the United States. Approximately one third of these bridges are in need of maintenance and will cost more than $120 billion to rehabilitate or repair. Several factors affect the performance of bridges over their life spans. Identifying these factors and accurately assessing the condition of bridges are critical in the development of an effective maintenance program. While there are several methods available for condition assessment, selecting the best technique remains a challenge. Therefore, developing an accurate and reliable model for concrete bridge deck deterioration is a key step towards improving the overall bridge condition assessment process. Consequently, the main goal of this dissertation is to develop an improved bridge deck deterioration prediction model that is based on the National Bridge Inventory (NBI) database. To achieve the goal, deterministic and stochastic approaches have been investigated to model the condition of bridge decks. While the literatures have typically proposed the Markov chain method as the best technique for the condition assessment of bridges, this dissertation reveals that some probability distribution functions, such as Lognormal and Weibull, could be better prediction models for concrete bridge decks under certain condition ratings. A new universal framework for optimizing the performance of prediction of concrete bridge deck condition was developed for this study. The framework is based on a nonlinear regression model that combines the Markov chain method with a state-specific probability distribution function. In this dissertation, it was observed that on average, bridge decks could stay much longer in their condition ratings than the typical 2-year inspection interval, suggesting that inspection schedules might be extended beyond 2 years for bridges in certain condition rating ranges. The results also showed that the best statistical model varied from one state to another and there was no universal statistical prediction model that can be developed for all states. The new framework was implemented on Michigan data and demonstrated that the prediction error in the combined model was less than each of the two models (i.e. Markov and Lognormal). The results also showed that average daily traffic, age, deck area, structure type, skew angle, and environmental factors have significant impact on the deterioration of concrete bridge decks. The contributions of the work presented in this dissertation include: 1) the identification of the significant factors that impact concrete bridge deck deterioration; 2) the development of a universal deterioration prediction framework that can be uniquely tailored for each state’s data; and 3) supporting the possibility of extending inspection schedules beyond the typical 2-year cycles. Future work may involve: 1) evaluating each of the factors that impact the deterioration rates in more depth by refining the investigation ranges; 2) investigating the possibility of revising the regular bridge deck inspection intervals beyond the 2-year cycles; and 3) developing deterioration prediction models for other bridge elements (i.e. superstructure and substructure) using the framework developed in this dissertation.
Several evaluation techniques were employed to assess concrete bridge deck condition, including visual inspection, hammer sounding and chaining, dielectric measurements, ground-penetrating radar imaging, resistivity testing, half-cell potential testing, and chloride concentration testing. The condition assessment testing confirmed that chloride-induced corrosion of reinforcing steel is the primary mechanism of deck deterioration and that inadequate cover over the upper steel mat facilitated accelerated corrosion damage in many instances. The bridge deck condition analyses produced from the results of non-destructive testing were compared to the visual inspection ratings assigned to each deck by UDOT.