Download Free Conceptual Wavelets In Digital Signal Processing Book in PDF and EPUB Free Download. You can read online Conceptual Wavelets In Digital Signal Processing and write the review.

This unique resource examines the conceptual, computational, and practical aspects of applied signal processing using wavelets. With this book, readers will understand and be able to use the power and utility of new wavelet methods in science and engineering problems and analysis. The text is written in a clear, accessible style avoiding unnecessary abstractions and details. From a computational perspective, wavelet signal processing algorithms are presented and applied to signal compression, noise suppression, and signal identification. Numerical illustrations of these computational techniques are further provided with interactive software (MATLAB code) that is available on the World Wide Web. Topics and Features Continuous wavelet and Gabor transforms Frame-based theory of discretization and reconstruction of analog signals is developed New and efficient "overcomplete" wavelet transform is introduced and applied Numerical illustrations with an object-oriented computational perspective using the Wavelet Signal Processing Workstation (MATLAB code) available This book is an excellent resource for information and computational tools needed to use wavelets in many types of signal processing problems. Graduates, professionals, and practitioners in engineering, computer science, geophysics, and applied mathematics will benefit from using the book and software tools. The present, softcover reprint is designed to make this classic textbook available to a wider audience. A self-contained text that is theoretically rigorous while maintaining contact with interesting applications. A particularly noteworthy topic...is a class of ‘overcomplete wavelets’. These functions are not orthonormal and they lead to many useful results. —Journal of Mathematical Psychology
This comprehensive and engaging textbook introduces the basic principles and techniques of signal processing, from the fundamental ideas of signals and systems theory to real-world applications. Students are introduced to the powerful foundations of modern signal processing, including the basic geometry of Hilbert space, the mathematics of Fourier transforms, and essentials of sampling, interpolation, approximation and compression The authors discuss real-world issues and hurdles to using these tools, and ways of adapting them to overcome problems of finiteness and localization, the limitations of uncertainty, and computational costs. It includes over 160 homework problems and over 220 worked examples, specifically designed to test and expand students' understanding of the fundamentals of signal processing, and is accompanied by extensive online materials designed to aid learning, including Mathematica® resources and interactive demonstrations.
Fractal geometry and recent developments in wavelet theory are having an important impact on the field of signal processing. Efficient representations for fractal signals based on wavelets are opening up new applications for signal processing, and providing better solutions to problems in existing applications. Signal Processing with Fractals provides a valuable introduction to this new and exciting area, and develops a powerful conceptual foundation for understanding the topic. Practical techniques for synthesizing, analyzing, and processing fractal signals for a wide range of applications are developed in detail, and novel applications in communications are explored.
This book covers the basics of processing and spectral analysis of monovariate discrete-time signals. The approach is practical, the aim being to acquaint the reader with the indications for and drawbacks of the various methods and to highlight possible misuses. The book is rich in original ideas, visualized in new and illuminating ways, and is structured so that parts can be skipped without loss of continuity. Many examples are included, based on synthetic data and real measurements from the fields of physics, biology, medicine, macroeconomics etc., and a complete set of MATLAB exercises requiring no previous experience of programming is provided. Prior advanced mathematical skills are not needed in order to understand the contents: a good command of basic mathematical analysis is sufficient. Where more advanced mathematical tools are necessary, they are included in an Appendix and presented in an easy-to-follow way. With this book, digital signal processing leaves the domain of engineering to address the needs of scientists and scholars in traditionally less quantitative disciplines, now facing increasing amounts of data.
Using everyday examples and simple diagrams, two leading DSP consultants and instructors completely demystify signal processing with this text. Students will discover what digital signals are, how they're generated, and how they're changing life. Students will learn all they need to know about digital signal collection, filtering, analysis, and more, and how DSP works in today's most exciting devices and applications.
Updated and Expanded Textbook Offers Accessible and Applications-First Introduction to Wavelet Theory for Students and Professionals The new edition of Discrete Wavelet Transformations continues to guide readers through the abstract concepts of wavelet theory by using Dr. Van Fleet’s highly practical, application-based approach, which reflects how mathematicians construct solutions to challenges outside the classroom. By introducing the Haar, orthogonal, and biorthogonal filters without the use of Fourier series, Van Fleet allows his audience to connect concepts directly to real-world applications at an earlier point than other publications in the field. Leveraging extensive graphical displays, this self-contained volume integrates concepts from calculus and linear algebra into the constructions of wavelet transformations and their applications, including data compression, edge detection in images and denoising of signals. Conceptual understanding is reinforced with over 500 detailed exercises and 24 computer labs. The second edition discusses new applications including image segmentation, pansharpening, and the FBI fingerprint compression specification. Other notable features include: Two new chapters covering wavelet packets and the lifting method A reorganization of the presentation so that basic filters can be constructed without the use of Fourier techniques A new comprehensive chapter that explains filter derivation using Fourier techniques Over 120 examples of which 91 are “live examples,” which allow the reader to quickly reproduce these examples in Mathematica or MATLAB and deepen conceptual mastery An overview of digital image basics, equipping readers with the tools they need to understand the image processing applications presented A complete rewrite of the DiscreteWavelets package called WaveletWare for use with Mathematica and MATLAB A website, www.stthomas.edu/wavelets, featuring material containing the WaveletWare package, live examples, and computer labs in addition to companion material for teaching a course using the book Comprehensive and grounded, this book and its online components provide an excellent foundation for developing undergraduate courses as well as a valuable resource for mathematicians, signal process engineers, and other professionals seeking to understand the practical applications of discrete wavelet transformations in solving real-world challenges.
Wavelet Analysis and its Applications, Volume 1: An Introduction to Wavelets provides an introductory treatise on wavelet analysis with an emphasis on spline-wavelets and time-frequency analysis. This book is divided into seven chapters. Chapter 1 presents a brief overview of the subject, including classification of wavelets, integral wavelet transform for time-frequency analysis, multi-resolution analysis highlighting the important properties of splines, and wavelet algorithms for decomposition and reconstruction of functions. The preliminary material on Fourier analysis and signal theory is covered in Chapters 2 and 3. Chapter 4 covers the introductory study of cardinal splines, while Chapter 5 describes a general approach to the analysis and construction of scaling functions and wavelets. Spline-wavelets are deliberated in Chapter 6. The last chapter is devoted to an investigation of orthogonal wavelets and wavelet packets. This volume serves as a textbook for an introductory one-semester course on "wavelet analysis for upper-division undergraduate or beginning graduate mathematics and engineering students.
With emphasis on the practical applications of signal processing, this book is designed for upper division engineering & computer sciences students as well as practicing engineers.
With a novel, less classical approach to the subject, the authors have written a book with the conviction that signal processing should be taught to be fun. The treatment is therefore less focused on the mathematics and more on the conceptual aspects, the idea being to allow the readers to think about the subject at a higher conceptual level, thus building the foundations for more advanced topics. The book remains an engineering text, with the goal of helping students solve real-world problems. In this vein, the last chapter pulls together the individual topics as discussed throughout the book into an in-depth look at the development of an end-to-end communication system, namely, a modem for communicating digital information over an analog channel.