Download Free Conceptual Foundations Of Modern Particle Physics Book in PDF and EPUB Free Download. You can read online Conceptual Foundations Of Modern Particle Physics and write the review.

For scientific, technological and organizational reasons, the end of World War II (in 1945) saw a rapid acceleration in the tempo of discovery and understanding in nuclear physics, cosmic rays and quantum field theory, which together triggered the birth of modern particle physics. The first fifteen years (1945-60) following the war's end ? the ?Startup Period? in modern particle physics -witnessed a series of major experimental and theoretical developments that began to define the conceptual contours (non-Abelian internal symmetries, Yang-Mills fields, renormalization group, chirality invariance, baryon-lepton symmetry in weak interactions, spontaneous symmetry breaking) of the quantum field theory of three of the basic interactions in nature (electromagnetic, strong and weak). But it took another fifteen years (1960-75) ? the ?Heroic Period? in modern particle physics ? to unravel the physical content and complete the mathematical formulation of the standard gauge theory of the strong and electroweak interactions among the three generations of quarks and leptons. The impressive accomplishments during the ?Heroic Period? were followed by what is called the ?period of consolidation and speculation (1975-1990)?, which includes the experimental consolidation of the standard model (SM) through precision tests, theoretical consolidation of SM through the search for more rigorous mathematical solutions to the Yang-Mills-Higgs equations, and speculative theoretical excursions ?beyond SM?.Within this historical-conceptual framework, the author ? himself a practicing particle theorist for the past fifty years ? attempts to trace the highlights in the conceptual evolution of modern particle physics from its early beginnings until the present time. Apart from the first chapter ? which sketches a broad overview of the entire field ? the remaining nine chapters of the book offer detailed discussions of the major concepts and principles that prevailed and were given wide currency during each of the fifteen-year periods that comprise the history of modern particle physics. Those concepts and principles that contributed only peripherally to the standard model are given less coverage but an attempt is made to inform the reader about such contributions (which may turn out to be significant at a future time) and to suggest references that supply more information. Chapters 2 and 3 of the book cover a range of topics that received dedicated attention during the ?Startup Period? although some of the results were not incorporated into the structure of the standard model. Chapters 4-6 constitute the core of the book and try to recapture much of the conceptual excitement of the ?Heroic Period?, when quantum flavordynamics (QFD) and quantum chromodynamics (QCD) received their definitive formulation. [It should be emphasized that, throughout the book, logical coherence takes precedence over historical chronology (e.g. some of the precision tests of QFD are discussed in Chapter 6)]. Chapter 7 provides a fairly complete discussion of the chiral gauge anomalies in four dimensions with special application to the standard model (although the larger unification models are also considered). The remaining three chapters of the book (Chapters 7-10) cover concepts and principles that originated primarily during the ?Period of Consolidation and Speculation? but, again, this is not a literal statement. Chapters 8 and 9 report on two of the main directions that were pursued to overcome acknowledged deficiencies of the standard model: unification models in Chapter 8 and attempts to account for the existence of precisely three generations of quarks and leptons, primarily by means of preon models, in Chapter 9. The most innovative of the final three chapters of the book is Chapter 10 on topological conservation laws. This last chapter tries to explain the significance of topologically non-trivial solutions in four-dimensional (space-time) particle physics (e.g. 't Hooft-Polyakov monopoles, instantons, sphalerons, global SU(2) anomaly, Wess-Zumino term, etc.) and to reflect on some of the problems that have ensued (e.g. the ?strong CP problem? in QCD) from this effort. It turns out that the more felicitous topological applications of field theory are found ? as of now ? in condensed matter physics; these successful physical applications (to polyacetylene, quantized magnetic flux in type-II low temperature superconductivity, etc.) are discussed in Chapter 10, as a good illustration of the conceptual unity of modern physics.
This fascinating work goes beyond the standard interpretation of quantum theory to explore its fundamental concepts. Author Dipankar Home examines such alternative schemes as the Bohmian approach, the decoherence models, and the dynamical models of wave function collapse. Home carefully explains how a number of the anomalies in quantum theory have become amenable to precise quantitative formulations Throughout the chapters, the emphasis is on conceptual aspects of quantum theory and the implications of recent investigations into these questions.
This book is written for students and scientists wanting to learn about the Standard Model of particle physics. Only an introductory course knowledge about quantum theory is needed. The text provides a pedagogical description of the theory, and incorporates the recent Higgs boson and top quark discoveries. With its clear and engaging style, this new edition retains its essential simplicity. Long and detailed calculations are replaced by simple approximate ones. It includes introductions to accelerators, colliders, and detectors, and several main experimental tests of the Standard Model are explained. Descriptions of some well-motivated extensions of the Standard Model prepare the reader for new developments. It emphasizes the concepts of gauge theories and Higgs physics, electroweak unification and symmetry breaking, and how force strengths vary with energy, providing a solid foundation for those working in the field, and for those who simply want to learn about the Standard Model.
A unique presentation of our current understanding of particle physics for researchers, advanced undergraduate and graduate students.
Multi-author volume on the history and philosophy of physics.
"Unique in its coverage of all aspects of modern particle physics, this textbook provides a clear connection between the theory and recent experimental results, including the discovery of the Higgs boson at CERN. It provides a comprehensive and self-contained description of the Standard Model of particle physics suitable for upper-level undergraduate students and graduate students studying experimental particle physics. Physical theory is introduced in a straightforward manner with full mathematical derivations throughout. Fully-worked examples enable students to link the mathematical theory to results from modern particle physics experiments. End-of-chapter exercises, graded by difficulty, provide students with a deeper understanding of the subject. Online resources available at www.cambridge.org/MPP feature password-protected fully-worked solutions to problems for instructors, numerical solutions and hints to the problems for students and PowerPoint slides and JPEGs of figures from the book"--
The goal of this Volume "Conceptual Foundations of Materials: A standard model for ground- and excited-state properties" is to present the fundamentals of electronic structure theory that are central to the understanding and prediction of materials phenomena and properties. The emphasis is on foundations and concepts. The Sections are designed to offer a broad and comprehensive perspective of the field. They cover the basic aspects of modern electronic structure approaches and highlight their applications to the structural (ground state, vibrational, dynamic and thermodynamic, etc.) and electronic (spectroscopic, dielectric, magnetic, transport, etc.) properties of real materials including solids, clusters, liquids, and nanostructure materials. This framework also forms a basis for studies of emergent properties arising from low-energy electron correlations and interactions such as the quantum Hall effects, superconductivity, and other cooperative phenomena. Although some of the basics and models for solids were developed in the early part of the last century by figures such as Bloch, Pauli, Fermi, and Slater, the field of electronic structure theory went through a phenomenal growth during the past two decades, leading to new concepts, understandings, and predictive capabilities for determining the ground- and excited-state properties of real, complex materials from first principles. For example, theory can now be used to predict the existence and properties of materials not previously realized in nature or in the laboratory. Computer experiments can be performed to examine the behavior of individual atoms in a particular process, to analyze the importance of different mechanisms, or just to see what happen if one varies the interactions and parameters in the simulation. Also, with ab initio calculations, one can determine from first principles important interaction parameters which are needed in model studies of complex processes or highly correlated systems. Each time a new material or a novel form of a material is discovered, electronic structure theory inevitably plays a fundamental role in unraveling its properties. - Provides the foundations of the field of condensed matter physics - An excellent supplementary text for classes on condensed matter physics/solid state physics - Volume covers current work at the forefront - Presentations are accessible to nonspecialists, with focus on underlying fundamentals
The book attempts to provide an introduction to quantum field theory emphasizing conceptual issues frequently neglected in more "utilitarian" treatments of the subject. The book is divided into four parts, entitled respectively "Origins", "Dynamics", "Symmetries", and "Scales". The emphasis is conceptual - the aim is to build the theory up systematically from some clearly stated foundational concepts - and therefore to a large extent anti-historical, but two historical Chapters ("Origins") are included to situate quantum field theory in the larger context of modern physical theories. The three remaining sections of the book follow a step by step reconstruction of this framework beginning with just a few basic assumptions: relativistic invariance, the basic principles of quantum mechanics, and the prohibition of physical action at a distance embodied in the clustering principle. The "Dynamics" section of the book lays out the basic structure of quantum field theory arising from the sequential insertion of quantum-mechanical, relativistic and locality constraints. The central role of symmetries in relativistic quantum field theories is explored in the third section of the book, while in the final section, entitled "Scales", we explore in detail the feature of quantum field theories most critical for their enormous phenomenological success - the scale separation property embodied by the renormalization group properties of a theory defined by an effective local Lagrangian.
"The book starts with a description of classical mechanics then discusses the quantum phenomena that require us to give up our commonsense classical intuitions. We consider the physical and conceptual arguments that led to the standard von Neumann-Dirac formulation of quantum mechanics and how the standard theory explains quantum phenomena. This includes a discussion of how the theory's two dynamical laws work with the standard interpretation of states to explain determinate measurement records, quantum statistics, interference effects, entanglement, decoherence, and quantum nonlocality. A careful understanding of how the standard theory works ultimately leads to the quantum measurement problem. We consider how the measurement problem threatens the logical consistency of the standard theory then turn to a discussion of the main proposals for resolving it. This includes collapse formulations of quantum mechanics like Wigner's extension of the standard theory and the GRW approach and no-collapse formulations like pure wave mechanics, the various many-worlds theories, and Bohmian mechanics. In discussing alternative formulations of quantum mechanics we pay particular attention to the explanatory role played by each theory's empirical ontology and associated metaphysical commitments and the conceptual trade-offs between theoretical options"--
This book provides a comprehensive overview of modern particle physics accessible to anyone with a true passion for wanting to know how the universe works. We are introduced to the known particles of the world we live in. An elegant explanation of quantum mechanics and relativity paves the way for an understanding of the laws that govern particle physics. These laws are put into action in the world of accelerators, colliders and detectors found at institutions such as CERN and Fermilab that are in the forefront of technical innovation. Real world and theory meet using Feynman diagrams to solve the problems of infinities and deduce the need for the Higgs boson.Facts and Mysteries in Elementary Particle Physics offers an incredible insight from an eyewitness and participant in some of the greatest discoveries in 20th century science. From Einstein's theory of relativity to the spectacular discovery of the Higgs particle, this book will fascinate and educate anyone interested in the world of quarks, leptons and gauge theories.This book also contains many thumbnail sketches of particle physics personalities, including contemporaries as seen through the eyes of the author. Illustrated with pictures, these candid sketches present rare, perceptive views of the characters that populate the field.The Chapter on Particle Theory, in a pre-publication, was termed 'superbly lucid' by David Miller in Nature (Vol. 396, 17 Dec. 1998, p. 642).