Download Free Concepts Of Programming Languages Book in PDF and EPUB Free Download. You can read online Concepts Of Programming Languages and write the review.

A comprehensive undergraduate textbook covering both theory and practical design issues, with an emphasis on object-oriented languages.
Key ideas in programming language design and implementation explained using a simple and concise framework; a comprehensive introduction suitable for use as a textbook or a reference for researchers. Hundreds of programming languages are in use today—scripting languages for Internet commerce, user interface programming tools, spreadsheet macros, page format specification languages, and many others. Designing a programming language is a metaprogramming activity that bears certain similarities to programming in a regular language, with clarity and simplicity even more important than in ordinary programming. This comprehensive text uses a simple and concise framework to teach key ideas in programming language design and implementation. The book's unique approach is based on a family of syntactically simple pedagogical languages that allow students to explore programming language concepts systematically. It takes as premise and starting point the idea that when language behaviors become incredibly complex, the description of the behaviors must be incredibly simple. The book presents a set of tools (a mathematical metalanguage, abstract syntax, operational and denotational semantics) and uses it to explore a comprehensive set of programming language design dimensions, including dynamic semantics (naming, state, control, data), static semantics (types, type reconstruction, polymporphism, effects), and pragmatics (compilation, garbage collection). The many examples and exercises offer students opportunities to apply the foundational ideas explained in the text. Specialized topics and code that implements many of the algorithms and compilation methods in the book can be found on the book's Web site, along with such additional material as a section on concurrency and proofs of the theorems in the text. The book is suitable as a text for an introductory graduate or advanced undergraduate programming languages course; it can also serve as a reference for researchers and practitioners.
This book uses a functional programming language (F#) as a metalanguage to present all concepts and examples, and thus has an operational flavour, enabling practical experiments and exercises. It includes basic concepts such as abstract syntax, interpretation, stack machines, compilation, type checking, garbage collection, and real machine code. Also included are more advanced topics on polymorphic types, type inference using unification, co- and contravariant types, continuations, and backwards code generation with on-the-fly peephole optimization. This second edition includes two new chapters. One describes compilation and type checking of a full functional language, tying together the previous chapters. The other describes how to compile a C subset to real (x86) hardware, as a smooth extension of the previously presented compilers.The examples present several interpreters and compilers for toy languages, including compilers for a small but usable subset of C, abstract machines, a garbage collector, and ML-style polymorphic type inference. Each chapter has exercises. Programming Language Concepts covers practical construction of lexers and parsers, but not regular expressions, automata and grammars, which are well covered already. It discusses the design and technology of Java and C# to strengthen students’ understanding of these widely used languages.
Programming Languages: Concepts and Implementation teaches language concepts from two complementary perspectives: implementation and paradigms. It covers the implementation of concepts through the incremental construction of a progressive series of interpreters in Python, and Racket Scheme, for purposes of its combined simplicity and power, and assessing the differences in the resulting languages.
In-depth case studies of representative languages from five generations of programming language design (Fortran, Algol-60, Pascal, Ada, LISP, Smalltalk, and Prolog) are used to illustrate larger themes."--BOOK JACKET.
A textbook that uses a hands-on approach to teach principles of programming languages, with Java as the implementation language. This introductory textbook uses a hands-on approach to teach the principles of programming languages. Using Java as the implementation language, Rajan covers a range of emerging topics, including concurrency, Big Data, and event-driven programming. Students will learn to design, implement, analyze, and understand both domain-specific and general-purpose programming languages. Develops basic concepts in languages, including means of computation, means of combination, and means of abstraction. Examines imperative features such as references, concurrency features such as fork, and reactive features such as event handling. Covers language features that express differing perspectives of thinking about computation, including those of logic programming and flow-based programming. Presumes Java programming experience and understanding of object-oriented classes, inheritance, polymorphism, and static classes. Each chapter corresponds with a working implementation of a small programming language allowing students to follow along.
Explains the concepts underlying programming languages, and demonstrates how these concepts are synthesized in the major paradigms: imperative, OO, concurrent, functional, logic and with recent scripting languages. It gives greatest prominence to the OO paradigm. Includes numerous examples using C, Java and C++ as exmplar languages Additional case-study languages: Python, Haskell, Prolog and Ada Extensive end-of-chapter exercises with sample solutions on the companion Web site Deepens study by examining the motivation of programming languages not just their features
By introducing the principles of programming languages, using the Java language as a support, Gilles Dowek provides the necessary fundamentals of this language as a first objective. It is important to realise that knowledge of a single programming language is not really enough. To be a good programmer, you should be familiar with several languages and be able to learn new ones. In order to do this, you’ll need to understand universal concepts, such as functions or cells, which exist in one form or another in all programming languages. The most effective way to understand these universal concepts is to compare two or more languages. In this book, the author has chosen Caml and C. To understand the principles of programming languages, it is also important to learn how to precisely define the meaning of a program, and tools for doing so are discussed. Finally, there is coverage of basic algorithms for lists and trees. Written for students, this book presents what all scientists and engineers should know about programming languages.
For courses in computer programming. This ISBN is for the Pearson eText access card. Evaluates the fundamentals of contemporary computer programming languages Concepts of Computer Programming Languages, 12th Edition introduces students to the fundamental concepts of computer programming languages and provides them with the tools necessary to evaluate contemporary and future languages. Through a critical analysis of design issues, the text teaches students the essential differences between computing with specific languages, while the in-depth discussion of programming language structures also prepares them to study compiler design. The 12th Edition includes new material on contemporary languages like Swift and Python, replacing discussions of outdated languages. Pearson eText is a simple-to-use, mobile-optimized, personalized reading experience. It lets students highlight, take notes, and review key vocabulary all in one place, even when offline. Seamlessly integrated videos and other rich media engage students and give them access to the help they need, when they need it. Educators can easily schedule readings and share their own notes with students so they see the connection between their eText and what they learn in class -- motivating them to keep reading, and keep learning. And, reading analytics offer insight into how students use the eText, helping educators tailor their instruction. NOTE: Pearson eText is a fully digital delivery of Pearson content and should only be purchased when required by your instructor. This ISBN is for the Pearson eText access card. In addition to your purchase, you will need a course invite link, provided by your instructor, to register for and use Pearson eText.
A new edition of a textbook that provides students with a deep, working understanding of the essential concepts of programming languages, completely revised, with significant new material. This book provides students with a deep, working understanding of the essential concepts of programming languages. Most of these essentials relate to the semantics, or meaning, of program elements, and the text uses interpreters (short programs that directly analyze an abstract representation of the program text) to express the semantics of many essential language elements in a way that is both clear and executable. The approach is both analytical and hands-on. The book provides views of programming languages using widely varying levels of abstraction, maintaining a clear connection between the high-level and low-level views. Exercises are a vital part of the text and are scattered throughout; the text explains the key concepts, and the exercises explore alternative designs and other issues. The complete Scheme code for all the interpreters and analyzers in the book can be found online through The MIT Press web site. For this new edition, each chapter has been revised and many new exercises have been added. Significant additions have been made to the text, including completely new chapters on modules and continuation-passing style. Essentials of Programming Languages can be used for both graduate and undergraduate courses, and for continuing education courses for programmers.