Download Free Concepts Of Modern Catalysis And Kinetics Book in PDF and EPUB Free Download. You can read online Concepts Of Modern Catalysis And Kinetics and write the review.

Until now, the literature has offered a rather limited approach to the use of fundamental kinetics and their application to catalytic reactions. Subsequently, this book spans the full range from fundamentals of kinetics and heterogeneous catalysis via modern experimental and theoretical results of model studies to their equivalent large-scale industrial production processes. The result is key knowledge for students at technical universities and professionals already working in industry. '... such an enterprise will be of great value to the community, to professionals as well as graduate and undergraduate students attempting to move into the field of modern catalysis and kinetics. I strongly recommend you publish this book based on the proposal.' - Prof. Dr. G. A. Samorjai, University of California 'Both authors are well respected specialists, with a very long record of original top-quality work and an international reputation. A book from these authors will be considered an authoritative piece of work, I definitely support this project and I am looking forward to use the book when published.' - Prof. Dr. D. E. Resasco, University of Oklahoma 'I wholly support the proposed project. The authors are very competent young colleagues and there is a real need for such a textbook' - Prof. Dr. G. Ertl, Fritz-Haber-Institut, Max-Planck-Gesellschaft, Berlin
In the past 12 years since its publication, Concepts of Modern Catalysis and Kinetics has become a standard textbook for graduate students at universities worldwide. Emphasizing fundamentals from thermodynamics, physical chemistry, spectroscopy, solid state chemistry and quantum chemistry, it introduces catalysis from a molecular perspective, and stresses how it is interwoven with the field of reaction kinetics. The authors go on to explain how the world of reacting molecules is connected to the real world of industry, by discussing the various scales (nano - micro - macro) that play a role in catalysis. Reflecting the modern-day focus on energy supplies, this third edition devotes attention to such processes as gas-to-liquids, coal-to-liquids, biomass conversion and hydrogen production. From reviews of the prior editions: 'Overall, this is a valuable book that I will use in teaching undergraduates and postgraduates.' (Angewandte Chemie - I. E.) '...this excellent book is highly recommended to students at technical universities, but also entrants in chemical industry. Furthermore, this informative handbook is also a must for all professionals in the community.' (AFS) 'I am impressed by the coverage of the book and it is a valuable addition to the catalysis literature and I highly recommend purchase' (Energy Sources)
This introductory textbook covers all aspects of catalysis. It also bridges computational methods, industrial applications and green chemistry, with over 600 references. The book is aimed at chemistry and chemical engineering students, and is suitable for both senior undergraduate- and graduate-level courses, with many examples and hands-on exercises. The author, a renowned researcher in catalysis, is well known for his clear teaching and writing style (he was voted "lecturer of the year" by the chemistry students). Following an introduction to green chemistry and the basics of catalysis, the book covers the principles and applications of homogeneous catalysis, heterogeneous catalysis and biocatalysis. Each chapter includes up-to-date industrial examples, that demonstrate how catalysis helps our society reach the goals of sustainable development. Since its publication in 2008, Catalysis: Concepts and Green Applications has become the most popular textbook in catalysis. This second edition is updated with the latest developments in catalysis research in academia and industry. It also contains 50 additional exercises, based on the suggestions of students and teachers of chemistry and chemical engineering from all over the world. The book is also available in the Chinese language (https://detail.tmall.com/item.htm?spm=a212k0.12153887.0.0.4e60687dUTEDKm&id=619581126247). Additional teaching material (original figures as PowerPoint lecture slides) is freely available in the Supplementary Material.
Written by one of the world's leading experts on the topic, this advanced textbook is the perfect introduction for newcomers to this exciting field. Concise and clear, the text focuses on such key aspects as kinetics, reaction mechanism and surface reactivity, concentrating on the essentials. The author also covers various catalytic systems, catalysis by design, and activation-deactivation. A website with supplementary material offers additional figures, original material and references.
Written by an excellent, highly experienced and motivated team of lecturers, this textbook is based on one of the most successful courses in catalysis and as such is tried-and-tested by generations of graduate and PhD students, i.e. the Catalysis-An-Integrated-Approach (CAIA) course organized by NIOK, the Dutch Catalysis research school. It covers all essential aspects of this important topic, including homogeneous, heterogeneous and biocatalysis, but also kinetics, catalyst characterization and preparation, reactor design and engineering. The perfect source of information for graduate and PhD students in chemistry and chemical engineering, as well as for scientists wanting to refresh their knowledge
This book is based on a graduate course and suitable as a primer for any newcomer to the field, this book is a detailed introduction to the experimental and computational methods that are used to study how solid surfaces act as catalysts. Features include: First comprehensive description of modern theory of heterogeneous catalysis Basis for understanding and designing experiments in the field Allows reader to understand catalyst design principles Introduction to important elements of energy transformation technology Test driven at Stanford University over several semesters
A practical approach to chemical reaction kinetics—from basic concepts to laboratory methods—featuring numerous real-world examples and case studies This book focuses on fundamental aspects of reaction kinetics with an emphasis on mathematical methods for analyzing experimental data and interpreting results. It describes basic concepts of reaction kinetics, parameters for measuring the progress of chemical reactions, variables that affect reaction rates, and ideal reactor performance. Mathematical methods for determining reaction kinetic parameters are described in detail with the help of real-world examples and fully-worked step-by-step solutions. Both analytical and numerical solutions are exemplified. The book begins with an introduction to the basic concepts of stoichiometry, thermodynamics, and chemical kinetics. This is followed by chapters featuring in-depth discussions of reaction kinetics; methods for studying irreversible reactions with one, two and three components; reversible reactions; and complex reactions. In the concluding chapters the author addresses reaction mechanisms, enzymatic reactions, data reconciliation, parameters, and examples of industrial reaction kinetics. Throughout the book industrial case studies are presented with step-by-step solutions, and further problems are provided at the end of each chapter. Takes a practical approach to chemical reaction kinetics basic concepts and methods Features numerous illustrative case studies based on the author’s extensive experience in the industry Provides essential information for chemical and process engineers, catalysis researchers, and professionals involved in developing kinetic models Functions as a student textbook on the basic principles of chemical kinetics for homogeneous catalysis Describes mathematical methods to determine reaction kinetic parameters with the help of industrial case studies, examples, and step-by-step solutions Chemical Reaction Kinetics is a valuable working resource for academic researchers, scientists, engineers, and catalyst manufacturers interested in kinetic modeling, parameter estimation, catalyst evaluation, process development, reactor modeling, and process simulation. It is also an ideal textbook for undergraduate and graduate-level courses in chemical kinetics, homogeneous catalysis, chemical reaction engineering, and petrochemical engineering, biotechnology.
Students contemplating careers in chemistry, whether in research, practice, or academia, obviously need a solid grounding in proper research methodology, reasoning, and analysis. However, there are few resources available that efficiently and effectively introduce these concepts and techniques and inspire students to undertake advanced research, particularly in the area of catalysis. Catalysis: Principles and Applications evolved out of a special, resoundingly successful short course for graduate students interested in catalysis. It covers nearly the entire gamut of the subject, from its fundamentals to its modern, applied aspects. The chapters were contributed by catalysis specialists from leading academic institutions, national laboratories and industrial R&D labs. Because they are based on the authors' lecture notes, each chapter is highly accessible and for the most part self-contained. Topics include various spectroscopic methods, biocatalysis, x-ray and thermal analysis, photocatalysis, and recent developments, such as solid acid catalysts, fine chemical synthesis, and computer-aided catalyst design. The book also contains discussions on a variety of modern applications, including environmental pollution control, petroleum refining, fuel cells, and monomolecular films. Logically presented, well-illustrated, and thoroughly referenced, Catalysis: Principles and Applications offers an outstanding basis for courses in catalysis. It not only imparts the fundamentals, synthesis, characterization, and applications of catalysis, but does so in a way that will motivate students to pursue more advanced studies and ultimately careers in the field.