Download Free Concepts In Cell Biology History And Evolution Book in PDF and EPUB Free Download. You can read online Concepts In Cell Biology History And Evolution and write the review.

This book discusses central concepts and theories in cell biology from the ancient past to the 21st century, based on the premise that understanding the works of scientists like Hooke, Hofmeister, Caspary, Strasburger, Sachs, Schleiden, Schwann, Mendel, Nemec, McClintock, etc. in the context of the latest advances in plant cell biology will help provide valuable new insights. Plants have been an object of study since the roots of the Greek, Chinese and Indian cultures. Since the term “cell” was first coined by Robert Hooke, 350 years ago in Micrographia, the study of plant cell biology has moved ahead at a tremendous pace. The field of cell biology owes its genesis to physics, which through microscopy has been a vital source for piquing scientists’ interest in the biology of the cell. Today, with the technical advances we have made in the field of optics, it is even possible to observe life on a nanoscale. From Hooke’s observations of cells and his inadvertent discovery of the cell wall, we have since moved forward to engineering plants with modified cell walls. Studies on the chloroplast have also gone from Julius von Sachs’ experiments with chloroplast, to using chloroplast engineering to deliver higher crop yields. Similarly, advances in fluorescent microscopy have made it far easier to observe organelles like chloroplast (once studied by Sachs) or actin (observed by Bohumil Nemec). If physics in the form of cell biology has been responsible for one half of this historical development, biochemistry has surely been the other.
This comprehensive history of cell evolution “deftly discusses the definition of life” as well as cellular organization, classification and more (San Francisco Book Review). The origin of cells remains one of the most fundamental mysteries in biology, one that has spawned a large body of research and debate over the past two decades. With In Search of Cell History, Franklin M. Harold offers a comprehensive, impartial take on that research and the controversies that keep the field in turmoil. Written in accessible language and complemented by a glossary for easy reference, this book examines the relationship between cells and genes; the central role of bioenergetics in the origin of life; the status of the universal tree of life with its three stems and viral outliers; and the controversies surrounding the last universal common ancestor. Harold also discusses the evolution of cellular organization, the origin of complex cells, and the incorporation of symbiotic organelles. In Search of Cell History shows us just how far we have come in understanding cell evolution—and the evolution of life in general—and how far we still have to go. “Wonderful…A loving distillation of connections within the incredible diversity of life in the biosphere, framing one of biology’s most important remaining questions: how did life begin?”—Nature
Concepts of Biology is designed for the introductory biology course for nonmajors taught at most two- and four-year colleges. The scope, sequence, and level of the program are designed to match typical course syllabi in the market. Concepts of Biology includes interesting applications, features a rich art program, and conveys the major themes of biology. The images in this textbook are grayscale.
More than a history, From Cells to Organisms delves into the nature of scientific practice, showing that results are interpreted not only through the lens of a microscope, but also through the lens of particular ideas and prior philosophical convictions. Before the twentieth century, heredity and development were considered complementary aspects of the fundamental problem of generation, but later they became distinct disciplines with the rise of genetics. Focusing on how cell theory shaped investigations of development, this book explores evolution, vitalism, the role of the nucleus, and the concept of biological individuality. Building upon the work of Thomas Huxley, an important early critic of cell theory, and more recent research from biologists such as Daniel Mazia, From Cells to Organisms covers ongoing debates around cell theory and uses case studies to examine the nature of scientific practice, the role of prestige, and the dynamics of theory change.
Thus far in the history of biology, two, and only two, fundamental principles have come to light that pervade and unify the entire science-the cell theory and the concept of evolution. While it is true that recently opened fields of inves tigation have given rise to several generalizations of wide impact, such as the universality of DNA and the energetic dynamics of ecology, closer inspection reveals them to be part and parcel of either of the first two mentioned. Because in the final analysis energy can act upon an organism solely at the cellular level, its effects may be perceived basically to represent one facet of cell me tabolism. Similarly, because the DNA theory centers upon the means by which cells build proteins and reproduce themselves, it too proves to be only one more, even though an exciting, aspect of the cell theory. In fact, if the matter is given closer scrutiny, evolution itself can be viewed as being a fundamental portion of the cell concept, for its effects arise only as a consequence of changes in the cell's genetic apparatus accumulating over geological time. Or, if one wishes, the diametrically opposite standpoint may be taken. For, if current concepts of the origin of life hold any validity, the evolution of precellular organisms from the primordial biochemicals must have proceeded over many eons of time prior to the advent of even the most primitive cell.
Although modern cell biology is often considered to have arisen following World War II in tandem with certain technological and methodological advances—in particular, the electron microscope and cell fractionation—its origins actually date to the 1830s and the development of cytology, the scientific study of cells. By 1924, with the publication of Edmund Vincent Cowdry’s General Cytology, the discipline had stretched beyond the bounds of purely microscopic observation to include the chemical, physical, and genetic analysis of cells. Inspired by Cowdry’s classic, watershed work, this book collects contributions from cell biologists, historians, and philosophers of science to explore the history and current status of cell biology. Despite extraordinary advances in describing both the structure and function of cells, cell biology tends to be overshadowed by molecular biology, a field that developed contemporaneously. This book remedies that unjust disparity through an investigation of cell biology’s evolution and its role in pushing forward the boundaries of biological understanding. Contributors show that modern concepts of cell organization, mechanistic explanations, epigenetics, molecular thinking, and even computational approaches all can be placed on the continuum of cell studies from cytology to cell biology and beyond. The first book in the series Convening Science: Discovery at the Marine Biological Laboratory, Visions of Cell Biology sheds new light on a century of cellular discovery.
This book is the first in a projected series on Evolutionary Cell Biology, the intent of which is to demonstrate the essential role of cellular mechanisms in transforming the genotype into the phenotype by transforming gene activity into evolutionary change in morphology. This book —Cells in Evolutionary Biology — evaluates the evolution of cells themselves and the role cells have been viewed to play as agents of change at other levels of biological organization. Chapters explore Darwin’s use of cells in his theory of evolution and how Weismann’s theory of the separation of germ plasm from body cells brought cells to center stage in understanding how acquired changes to cells within generations are not passed on to future generations. Chapter 7 of this book is freely available as a downloadable Open Access PDF at http://www.taylorfrancis.com under a Creative Commons Attribution-Non Commercial-No Derivatives (CC-BY-NC-ND) 4.0 license.