Download Free Concept Lattices And Their Applications Book in PDF and EPUB Free Download. You can read online Concept Lattices And Their Applications and write the review.

As the refereed proceedings of the Fourth International Conference on Concept Lattices and their Applications, CLA 2006, these 18 revised full papers, together with 3 invited contributions, presented were carefully reviewed and selected from 41 submissions.
This book constitutes the refereed proceedings of the Second International Conference on Formal Concept Analysis, ICFCA 2004, held in Sydney, Australia in February 2004. The 27 revised full papers presented together with 7 invited papers were carefully reviewed and selected for inclusion in the book. Formal concept analysis emerged out of efforts to restructure lattice theory and has been extended into attribute exploration, Boolean judgment, and contextual logics in order to create a powerful general framework for knowledge representation and formal reasoning; among the application areas of formal concept analysis are data and knowledge processing, data visualization, information retrieval, machine learning, data analysis, and knowledge management. The papers in this book address all current issues in formal concept analysis, ranging from foundational and methodological issues to applications in various fields.
This first textbook on formal concept analysis gives a systematic presentation of the mathematical foundations and their relations to applications in computer science, especially in data analysis and knowledge processing. Above all, it presents graphical methods for representing conceptual systems that have proved themselves in communicating knowledge. The mathematical foundations are treated thoroughly and are illuminated by means of numerous examples, making the basic theory readily accessible in compact form.
Formal concept analysis has been developed as a field of applied mathematics based on the mathematization of concept and concept hierarchy. It thereby allows us to mathematically represent, analyze, and construct conceptual structures. The formal concept analysis approach has been proven successful in a wide range of application fields. This book constitutes a comprehensive and systematic presentation of the state of the art of formal concept analysis and its applications. The first part of the book is devoted to foundational and methodological topics. The contributions in the second part demonstrate how formal concept analysis is successfully used outside of mathematics, in linguistics, text retrieval, association rule mining, data analysis, and economics. The third part presents applications in software engineering.
With the advent of the Web along with the unprecedented amount of information available in electronic format, conceptual data analysis is more useful and practical than ever, because this technology addresses important limitations of the systems that currently support users in their quest for information. Concept Data Analysis: Theory & Applications is the first book that provides a comprehensive treatment of the full range of algorithms available for conceptual data analysis, spanning creation, maintenance, display and manipulation of concept lattices. The accompanying website allows you to gain a greater understanding of the principles covered in the book through actively working on the topics discussed. The three main areas explored are interactive mining of documents or collections of documents (including Web documents), automatic text ranking, and rule mining from structured data. The potentials of conceptual data analysis in the application areas being considered are further illustrated by two detailed case studies. Concept Data Analysis: Theory & Applications is essential for researchers active in information processing and management and industry practitioners who are interested in creating a commercial product for conceptual data analysis or developing content management applications.
A computational perspective on partial order and lattice theory, focusing on algorithms and their applications This book provides a uniform treatment of the theory and applications of lattice theory. The applications covered include tracking dependency in distributed systems, combinatorics, detecting global predicates in distributed systems, set families, and integer partitions. The book presents algorithmic proofs of theorems whenever possible. These proofs are written in the calculational style advocated by Dijkstra, with arguments explicitly spelled out step by step. The author’s intent is for readers to learn not only the proofs, but the heuristics that guide said proofs. Introduction to Lattice Theory with Computer Science Applications: Examines; posets, Dilworth’s theorem, merging algorithms, lattices, lattice completion, morphisms, modular and distributive lattices, slicing, interval orders, tractable posets, lattice enumeration algorithms, and dimension theory Provides end of chapter exercises to help readers retain newfound knowledge on each subject Includes supplementary material at www.ece.utexas.edu/~garg Introduction to Lattice Theory with Computer Science Applications is written for students of computer science, as well as practicing mathematicians.
A survey of semimodularity that presents theory and applications in discrete mathematics, group theory and universal algebra.
This book constitutes the refereed proceedings of the Fourth International Conference on Concept Lattices and their Applications, CLA 2006, held in Tunis, Tunisia, October 30-November 1, 2006. The 18 revised full papers together with 3 invited contributions presented were carefully reviewed and selected from 41 submissions. The topics include formal concept analysis, foundations of FCA, mathematical structures related to FCA, relationship of FCA to other methods of data analysis, visualization of data in FCA, and applications of FCA.
This volume contains the texts of the principal survey papers presented at ALGORITHMS -and ORDER, held· at Ottawa, Canada from June 1 to June 12, 1987. The conference was supported by grants from the N.A.T.O. Advanced Study Institute programme, the University of Ottawa, and the Natural Sciences and Engineering Research Council of Canada. We are grateful for this considerable support. Over fifty years ago, the Symposium on Lattice Theory, in Charlottesville, U.S.A., proclaimed the vitality of ordered sets. Only twenty years later the Symposium on Partially Ordered Sets and Lattice Theory, held at Monterey, U.S.A., had solved many of the problems that had been originally posed. In 1981, the Symposium on Ordered Sets held at Banff, Canada, continued this tradition. It was marked by a landmark volume containing twenty-three articles on almost all current topics in the theory of ordered sets and its applications. Three years after, Graphs and Orders, also held at Banff, Canada, aimed to document the role of graphs in the theory of ordered sets and its applications. Because of its special place in the landscape of the mathematical sciences order is especially sensitive to new trends and developments. Today, the most important current in the theory and application of order springs from theoretical computer seience. Two themes of computer science lead the way. The first is data structure. Order is common to data structures.
Lattice theory extends into virtually every branch of mathematics, ranging from measure theory and convex geometry to probability theory and topology. A more recent development has been the rapid escalation of employing lattice theory for various applications outside the domain of pure mathematics. These applications range from electronic communication theory and gate array devices that implement Boolean logic to artificial intelligence and computer science in general. Introduction to Lattice Algebra: With Applications in AI, Pattern Recognition, Image Analysis, and Biomimetic Neural Networks lays emphasis on two subjects, the first being lattice algebra and the second the practical applications of that algebra. This textbook is intended to be used for a special topics course in artificial intelligence with a focus on pattern recognition, multispectral image analysis, and biomimetic artificial neural networks. The book is self-contained and – depending on the student’s major – can be used for a senior undergraduate level or first-year graduate level course. The book is also an ideal self-study guide for researchers and professionals in the above-mentioned disciplines. Features Filled with instructive examples and exercises to help build understanding Suitable for researchers, professionals and students, both in mathematics and computer science Contains numerous exercises.