Download Free Concentration Of Measure And Ricci Curvature Book in PDF and EPUB Free Download. You can read online Concentration Of Measure And Ricci Curvature and write the review.

The observation of the concentration of measure phenomenon is inspired by isoperimetric inequalities. This book offers the basic techniques and examples of the concentration of measure phenomenon. It presents concentration functions and inequalities, isoperimetric and functional examples, spectrum and topological applications and product measures.
The first Seasonal Institute of the Mathematical Society of Japan (MSJ-SI) “Probabilistic Approach to Geometry” was held at Kyoto University, Japan, on 28th July 2008 - 8th August, 2008. The conference aimed to make interactions between Geometry and Probability Theory and seek for new directions of those research areas. This volume contains the proceedings, selected research articles based on the talks, including survey articles on random groups, rough paths, and heat kernels by the survey lecturers in the conference. The readers will benefit of exploring in this developing research area.Published by Mathematical Society of Japan and distributed by World Scientific Publishing Co. for all markets except North America
Contains lecture notes from most of the courses presented at the 50th anniversary edition of the Seminaire de Mathematiques Superieure in Montreal. This 2011 summer school was devoted to the analysis and geometry of metric measure spaces, and featured much interplay between this subject and the emergent topic of optimal transportation.
This volume presents some of the research topics discussed at the 2014-2015 Annual Thematic Program Discrete Structures: Analysis and Applications at the Institute of Mathematics and its Applications during the Spring 2015 where geometric analysis, convex geometry and concentration phenomena were the focus. Leading experts have written surveys of research problems, making state of the art results more conveniently and widely available. The volume is organized into two parts. Part I contains those contributions that focus primarily on problems motivated by probability theory, while Part II contains those contributions that focus primarily on problems motivated by convex geometry and geometric analysis. This book will be of use to those who research convex geometry, geometric analysis and probability directly or apply such methods in other fields.
An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.
The interactions between concentration, isoperimetry and functional inequalities have led to many significant advances in functional analysis and probability theory. Important progress has also taken place in combinatorics, geometry, harmonic analysis and mathematical physics, with recent new applications in random matrices and information theory. This will appeal to graduate students and researchers interested in the interplay between analysis, probability, and geometry.
The aim of this paper is to provide new characterizations of the curvature dimension condition in the context of metric measure spaces (X,d,m). On the geometric side, the authors' new approach takes into account suitable weighted action functionals which provide the natural modulus of K-convexity when one investigates the convexity properties of N-dimensional entropies. On the side of diffusion semigroups and evolution variational inequalities, the authors' new approach uses the nonlinear diffusion semigroup induced by the N-dimensional entropy, in place of the heat flow. Under suitable assumptions (most notably the quadraticity of Cheeger's energy relative to the metric measure structure) both approaches are shown to be equivalent to the strong CD∗(K,N) condition of Bacher-Sturm.
This book focuses on the behaviour of large random matrices. Standard results are covered, and the presentation emphasizes elementary operator theory and differential equations, so as to be accessible to graduate students and other non-experts. The introductory chapters review material on Lie groups and probability measures in a style suitable for applications in random matrix theory. Later chapters use modern convexity theory to establish subtle results about the convergence of eigenvalue distributions as the size of the matrices increases. Random matrices are viewed as geometrical objects with large dimension. The book analyzes the concentration of measure phenomenon, which describes how measures behave on geometrical objects with large dimension. To prove such results for random matrices, the book develops the modern theory of optimal transportation and proves the associated functional inequalities involving entropy and information. These include the logarithmic Sobolev inequality, which measures how fast some physical systems converge to equilibrium.
The book is devoted to the theory of gradient flows in the general framework of metric spaces, and in the more specific setting of the space of probability measures, which provide a surprising link between optimal transportation theory and many evolutionary PDE's related to (non)linear diffusion. Particular emphasis is given to the convergence of the implicit time discretization method and to the error estimates for this discretization, extending the well established theory in Hilbert spaces. The book is split in two main parts that can be read independently of each other.
Articles on classical convex geometry, geometric functional analysis, computational geometry, and related areas of harmonic analysis, first published in 1999.