Download Free Computing With Logic Book in PDF and EPUB Free Download. You can read online Computing With Logic and write the review.

Provides a sound basis in logic, and introduces logical frameworks used in modelling, specifying and verifying computer systems.
An introduction to applying predicate logic to testing and verification of software and digital circuits that focuses on applications rather than theory. Computer scientists use logic for testing and verification of software and digital circuits, but many computer science students study logic only in the context of traditional mathematics, encountering the subject in a few lectures and a handful of problem sets in a discrete math course. This book offers a more substantive and rigorous approach to logic that focuses on applications in computer science. Topics covered include predicate logic, equation-based software, automated testing and theorem proving, and large-scale computation. Formalism is emphasized, and the book employs three formal notations: traditional algebraic formulas of propositional and predicate logic; digital circuit diagrams; and the widely used partially automated theorem prover, ACL2, which provides an accessible introduction to mechanized formalism. For readers who want to see formalization in action, the text presents examples using Proof Pad, a lightweight ACL2 environment. Readers will not become ALC2 experts, but will learn how mechanized logic can benefit software and hardware engineers. In addition, 180 exercises, some of them extremely challenging, offer opportunities for problem solving. There are no prerequisites beyond high school algebra. Programming experience is not required to understand the book's equation-based approach. The book can be used in undergraduate courses in logic for computer science and introduction to computer science and in math courses for computer science students.
This easy-to-follow textbook introduces the mathematical language, knowledge and problem-solving skills that undergraduates need to study computing. The language is in part qualitative, with concepts such as set, relation, function and recursion/induction; but it is also partly quantitative, with principles of counting and finite probability. Entwined with both are the fundamental notions of logic and their use for representation and proof. Features: teaches finite math as a language for thinking, as much as knowledge and skills to be acquired; uses an intuitive approach with a focus on examples for all general concepts; brings out the interplay between the qualitative and the quantitative in all areas covered, particularly in the treatment of recursion and induction; balances carefully the abstract and concrete, principles and proofs, specific facts and general perspectives; includes highlight boxes that raise common queries and clear confusions; provides numerous exercises, with selected solutions.
This book provides the reader with the key concepts and techniques of modern digital logic design and applications. This concise treatment provides essential development and explanations for both classical and modern topics. The modern topics include unicode, unipolar transistors, copper technology, flash memory, HDL, verilog and logic simulation software tools. Also covered are combinatorial logic circuits and transistor circuits. It will be an essential resource for computer scientists, logic circuit designers and computer engineers.
Advocates of computers make sweeping claims for their inherently transformative power: new and different from previous technologies, they are sure to resolve many of our existing social problems, and perhaps even to cause a positive political revolution. In The Cultural Logic of Computation, David Golumbia, who worked as a software designer for more than ten years, confronts this orthodoxy, arguing instead that computers are cultural “all the way down”—that there is no part of the apparent technological transformation that is not shaped by historical and cultural processes, or that escapes existing cultural politics. From the perspective of transnational corporations and governments, computers benefit existing power much more fully than they provide means to distribute or contest it. Despite this, our thinking about computers has developed into a nearly invisible ideology Golumbia dubs “computationalism”—an ideology that informs our thinking not just about computers, but about economic and social trends as sweeping as globalization. Driven by a programmer’s knowledge of computers as well as by a deep engagement with contemporary literary and cultural studies and poststructuralist theory, The Cultural Logic of Computation provides a needed corrective to the uncritical enthusiasm for computers common today in many parts of our culture.
An introduction to computer engineering for babies. Learn basic logic gates with hands on examples of buttons and an output LED.
This book gives an account oC the mathematical Coundations oC logic programming. I have attempted to make the book selC-contained by including prooCs of almost all the results needed. The only prerequisites are some Camiliarity with a logic programming language, such as PROLOG, and a certain mathematical maturity. For example, the reader should be Camiliar with induction arguments and be comCortable manipulating logical expressions. Also the last chapter assumes some acquaintance with the elementary aspects of metric spaces, especially properties oC continuous mappings and compact spaces. Chapter 1 presents the declarative aspects of logic programming. This chapter contains the basic material Crom first order logic and fixpoint theory which will be required. The main concepts discussed here are those oC a logic program, model, correct answer substitution and fixpoint. Also the unification algorithm is discussed in some detail. Chapter 2 is concerned with the procedural semantics oC logic programs. The declarative concepts are implemented by means oC a specialized Corm oC resolution, called SLD-resolution. The main results of this chapter concern the soundness and completeness oC SLD-resolution and the independence oC the computation rule. We also discuss the implications of omitting the occur check from PROLOG implementations. Chapter 3 discusses negation. Current PROLOG systems implement a form of negation by means of the negation as failure rule. The main results of this chapter are the soundness and completeness oC the negation as failure rule.
This book introduces the notions and methods of formal logic from a computer science standpoint, covering propositional logic, predicate logic, and foundations of logic programming. The classic text is replete with illustrative examples and exercises. It presents applications and themes of computer science research such as resolution, automated deduction, and logic programming in a rigorous but readable way. The style and scope of the work, rounded out by the inclusion of exercises, make this an excellent textbook for an advanced undergraduate course in logic for computer scientists.
This text presents the formal concepts underlying Computer Science.It starts with a wide introduction to Logic with an emphasis on reasoning and proof, with chapters on Program Verification and Prolog.The treatment of computability with Automata and Formal Languages stands out in several ways:The style is appropriate for both undergraduate and graduate classes.
Written for professionals learning the field of discrete mathematics, this book provides the necessary foundations of computer science without requiring excessive mathematical prerequisites. Using a balanced approach of theory and examples, software engineers will find it a refreshing treatment of applications in programming.