Download Free Computing Triangulations Using Oriented Matroids Book in PDF and EPUB Free Download. You can read online Computing Triangulations Using Oriented Matroids and write the review.

Triangulations presents the first comprehensive treatment of the theory of secondary polytopes and related topics. The text discusses the geometric structure behind the algorithms and shows new emerging applications, including hundreds of illustrations, examples, and exercises.
We consider the concept of triangulation of an oriented matroid. We provide a definition which generalizes the previous ones by Billera-Munson and by Anderson and which specializes to the usual notion of triangulation (or simplicial fan) in the realizable case. Then we study the relation existing between triangulations of an oriented matroid $\mathcal{M}$ and extensions of its dual $\mathcal{M}^*$, via the so-called lifting triangulations. We show that this duality behaves particularly well in the class of Lawrence matroid polytopes. In particular, that the extension space conjecture for realizable oriented matroids is equivalent to the restriction to Lawrence polytopes of the Generalized Baues problem for subdivisions of polytopes. We finish by showing examples and a characterization of lifting triangulations.
The Handbook of Discrete and Computational Geometry is intended as a reference book fully accessible to nonspecialists as well as specialists, covering all major aspects of both fields. The book offers the most important results and methods in discrete and computational geometry to those who use them in their work, both in the academic world—as researchers in mathematics and computer science—and in the professional world—as practitioners in fields as diverse as operations research, molecular biology, and robotics. Discrete geometry has contributed significantly to the growth of discrete mathematics in recent years. This has been fueled partly by the advent of powerful computers and by the recent explosion of activity in the relatively young field of computational geometry. This synthesis between discrete and computational geometry lies at the heart of this Handbook. A growing list of application fields includes combinatorial optimization, computer-aided design, computer graphics, crystallography, data analysis, error-correcting codes, geographic information systems, motion planning, operations research, pattern recognition, robotics, solid modeling, and tomography.
A collection of surveys and research papers on mathematical software and algorithms. The common thread is that the field of mathematical applications lies on the border between algebra and geometry. Topics include polyhedral geometry, elimination theory, algebraic surfaces, Gröbner bases, triangulations of point sets and the mutual relationship. This diversity is accompanied by the abundance of available software systems which often handle only special mathematical aspects. This is why the volume also focuses on solutions to the integration of mathematical software systems. This includes low-level and XML based high-level communication channels as well as general frameworks for modular systems.
First comprehensive, accessible account; second edition has expanded bibliography and a new appendix surveying recent research.
The advent of mathematical software has been one of the most important events in mathematics. Mathematical software systems are used to construct examples, to prove theorems, and to find new mathematical phenomena. On the other hand, mathematical research often motivates developments of new algorithms and new systems.This volume contains the papers presented at the First International Congress of Mathematical Software, which aimed at a coherent study of mathematical software systems from a wide variety of branches of mathematics. The book discusses more than one hundred mathematical software systems. Readers can get an overview of the current status of the arts of mathematical software and algorithms.The proceedings have been selected for coverage in: • Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)
Algebra and number theory have always been counted among the most beautiful mathematical areas with deep proofs and elegant results. However, for a long time they were not considered that important in view of the lack of real-life applications. This has dramatically changed: nowadays we find applications of algebra and number theory frequently in our daily life. This book focuses on the theory and algorithms for polynomials over various coefficient domains such as a finite field or ring. The operations on polynomials in the focus are factorization, composition and decomposition, basis computation for modules, etc. Algorithms for such operations on polynomials have always been a central interest in computer algebra, as it combines formal (the variables) and algebraic or numeric (the coefficients) aspects. The papers presented were selected from the Workshop on Computer Algebra and Polynomials, which was held in Linz at the Johann Radon Institute for Computational and Applied Mathematics (RICAM) during November 25-29, 2013, at the occasion of the Special Semester on Applications of Algebra and Number Theory.
The goal of this book is to explain, at the graduate student level, connections between tropical geometry and optimization. Building bridges between these two subject areas is fruitful in two ways. Through tropical geometry optimization algorithms become applicable to questions in algebraic geometry. Conversely, looking at topics in optimization through the tropical geometry lens adds an additional layer of structure. The author covers contemporary research topics that are relevant for applications such as phylogenetics, neural networks, combinatorial auctions, game theory, and computational complexity. This self-contained book grew out of several courses given at Technische Universität Berlin and elsewhere, and the main prerequisite for the reader is a basic knowledge in polytope theory. It contains a good number of exercises, many examples, beautiful figures, as well as explicit tools for computations using $texttt{polymake}$.
Pattern Recognition on Oriented Matroids covers a range of innovative problems in combinatorics, poset and graph theories, optimization, and number theory that constitute a far-reaching extension of the arsenal of committee methods in pattern recognition. The groundwork for the modern committee theory was laid in the mid-1960s, when it was shown that the familiar notion of solution to a feasible system of linear inequalities has ingenious analogues which can serve as collective solutions to infeasible systems. A hierarchy of dialects in the language of mathematics, for instance, open cones in the context of linear inequality systems, regions of hyperplane arrangements, and maximal covectors (or topes) of oriented matroids, provides an excellent opportunity to take a fresh look at the infeasible system of homogeneous strict linear inequalities – the standard working model for the contradictory two-class pattern recognition problem in its geometric setting. The universal language of oriented matroid theory considerably simplifies a structural and enumerative analysis of applied aspects of the infeasibility phenomenon. The present book is devoted to several selected topics in the emerging theory of pattern recognition on oriented matroids: the questions of existence and applicability of matroidal generalizations of committee decision rules and related graph-theoretic constructions to oriented matroids with very weak restrictions on their structural properties; a study (in which, in particular, interesting subsequences of the Farey sequence appear naturally) of the hierarchy of the corresponding tope committees; a description of the three-tope committees that are the most attractive approximation to the notion of solution to an infeasible system of linear constraints; an application of convexity in oriented matroids as well as blocker constructions in combinatorial optimization and in poset theory to enumerative problems on tope committees; an attempt to clarify how elementary changes (one-element reorientations) in an oriented matroid affect the family of its tope committees; a discrete Fourier analysis of the important family of critical tope committees through rank and distance relations in the tope poset and the tope graph; the characterization of a key combinatorial role played by the symmetric cycles in hypercube graphs. Contents Oriented Matroids, the Pattern Recognition Problem, and Tope Committees Boolean Intervals Dehn–Sommerville Type Relations Farey Subsequences Blocking Sets of Set Families, and Absolute Blocking Constructions in Posets Committees of Set Families, and Relative Blocking Constructions in Posets Layers of Tope Committees Three-Tope Committees Halfspaces, Convex Sets, and Tope Committees Tope Committees and Reorientations of Oriented Matroids Topes and Critical Committees Critical Committees and Distance Signals Symmetric Cycles in the Hypercube Graphs
Toric varieties form a beautiful and accessible part of modern algebraic geometry. This book covers the standard topics in toric geometry; a novel feature is that each of the first nine chapters contains an introductory section on the necessary background material in algebraic geometry. Other topics covered include quotient constructions, vanishing theorems, equivariant cohomology, GIT quotients, the secondary fan, and the minimal model program for toric varieties. The subject lends itself to rich examples reflected in the 134 illustrations included in the text. The book also explores connections with commutative algebra and polyhedral geometry, treating both polytopes and their unbounded cousins, polyhedra. There are appendices on the history of toric varieties and the computational tools available to investigate nontrivial examples in toric geometry. Readers of this book should be familiar with the material covered in basic graduate courses in algebra and topology, and to a somewhat lesser degree, complex analysis. In addition, the authors assume that the reader has had some previous experience with algebraic geometry at an advanced undergraduate level. The book will be a useful reference for graduate students and researchers who are interested in algebraic geometry, polyhedral geometry, and toric varieties.