Download Free Computer Vision In Vehicle Technology Book in PDF and EPUB Free Download. You can read online Computer Vision In Vehicle Technology and write the review.

A unified view of the use of computer vision technology for different types of vehicles Computer Vision in Vehicle Technology focuses on computer vision as on-board technology, bringing together fields of research where computer vision is progressively penetrating: the automotive sector, unmanned aerial and underwater vehicles. It also serves as a reference for researchers of current developments and challenges in areas of the application of computer vision, involving vehicles such as advanced driver assistance (pedestrian detection, lane departure warning, traffic sign recognition), autonomous driving and robot navigation (with visual simultaneous localization and mapping) or unmanned aerial vehicles (obstacle avoidance, landscape classification and mapping, fire risk assessment). The overall role of computer vision for the navigation of different vehicles, as well as technology to address on-board applications, is analysed. Key features: Presents the latest advances in the field of computer vision and vehicle technologies in a highly informative and understandable way, including the basic mathematics for each problem. Provides a comprehensive summary of the state of the art computer vision techniques in vehicles from the navigation and the addressable applications points of view. Offers a detailed description of the open challenges and business opportunities for the immediate future in the field of vision based vehicle technologies. This is essential reading for computer vision researchers, as well as engineers working in vehicle technologies, and students of computer vision.
A unified view of the use of computer vision technology for different types of vehicles Computer Vision in Vehicle Technology focuses on computer vision as on-board technology, bringing together fields of research where computer vision is progressively penetrating: the automotive sector, unmanned aerial and underwater vehicles. It also serves as a reference for researchers of current developments and challenges in areas of the application of computer vision, involving vehicles such as advanced driver assistance (pedestrian detection, lane departure warning, traffic sign recognition), autonomous driving and robot navigation (with visual simultaneous localization and mapping) or unmanned aerial vehicles (obstacle avoidance, landscape classification and mapping, fire risk assessment). The overall role of computer vision for the navigation of different vehicles, as well as technology to address on-board applications, is analysed. Key features: Presents the latest advances in the field of computer vision and vehicle technologies in a highly informative and understandable way, including the basic mathematics for each problem. Provides a comprehensive summary of the state of the art computer vision techniques in vehicles from the navigation and the addressable applications points of view. Offers a detailed description of the open challenges and business opportunities for the immediate future in the field of vision based vehicle technologies. This is essential reading for computer vision researchers, as well as engineers working in vehicle technologies, and students of computer vision.
Explore self-driving car technology using deep learning and artificial intelligence techniques and libraries such as TensorFlow, Keras, and OpenCV Key FeaturesBuild and train powerful neural network models to build an autonomous carImplement computer vision, deep learning, and AI techniques to create automotive algorithmsOvercome the challenges faced while automating different aspects of driving using modern Python libraries and architecturesBook Description Thanks to a number of recent breakthroughs, self-driving car technology is now an emerging subject in the field of artificial intelligence and has shifted data scientists' focus to building autonomous cars that will transform the automotive industry. This book is a comprehensive guide to use deep learning and computer vision techniques to develop autonomous cars. Starting with the basics of self-driving cars (SDCs), this book will take you through the deep neural network techniques required to get up and running with building your autonomous vehicle. Once you are comfortable with the basics, you'll delve into advanced computer vision techniques and learn how to use deep learning methods to perform a variety of computer vision tasks such as finding lane lines, improving image classification, and so on. You will explore the basic structure and working of a semantic segmentation model and get to grips with detecting cars using semantic segmentation. The book also covers advanced applications such as behavior-cloning and vehicle detection using OpenCV, transfer learning, and deep learning methodologies to train SDCs to mimic human driving. By the end of this book, you'll have learned how to implement a variety of neural networks to develop your own autonomous vehicle using modern Python libraries. What you will learnImplement deep neural network from scratch using the Keras libraryUnderstand the importance of deep learning in self-driving carsGet to grips with feature extraction techniques in image processing using the OpenCV libraryDesign a software pipeline that detects lane lines in videosImplement a convolutional neural network (CNN) image classifier for traffic signal signsTrain and test neural networks for behavioral-cloning by driving a car in a virtual simulatorDiscover various state-of-the-art semantic segmentation and object detection architecturesWho this book is for If you are a deep learning engineer, AI researcher, or anyone looking to implement deep learning and computer vision techniques to build self-driving blueprint solutions, this book is for you. Anyone who wants to learn how various automotive-related algorithms are built, will also find this book useful. Python programming experience, along with a basic understanding of deep learning, is necessary to get the most of this book.
A unified view of the use of computer vision technology for different types of vehicles Computer Vision in Vehicle Technology focuses on computer vision as on-board technology, bringing together fields of research where computer vision is progressively penetrating: the automotive sector, unmanned aerial and underwater vehicles. It also serves as a reference for researchers of current developments and challenges in areas of the application of computer vision, involving vehicles such as advanced driver assistance (pedestrian detection, lane departure warning, traffic sign recognition), autonomous driving and robot navigation (with visual simultaneous localization and mapping) or unmanned aerial vehicles (obstacle avoidance, landscape classification and mapping, fire risk assessment). The overall role of computer vision for the navigation of different vehicles, as well as technology to address on-board applications, is analysed. Key features: Presents the latest advances in the field of computer vision and vehicle technologies in a highly informative and understandable way, including the basic mathematics for each problem. Provides a comprehensive summary of the state of the art computer vision techniques in vehicles from the navigation and the addressable applications points of view. Offers a detailed description of the open challenges and business opportunities for the immediate future in the field of vision based vehicle technologies. This is essential reading for computer vision researchers, as well as engineers working in vehicle technologies, and students of computer vision.
This book summarises the state of the art in computer vision-based driver and road monitoring, focussing on monocular vision technology in particular, with the aim to address challenges of driver assistance and autonomous driving systems. While the systems designed for the assistance of drivers of on-road vehicles are currently converging to the design of autonomous vehicles, the research presented here focuses on scenarios where a driver is still assumed to pay attention to the traffic while operating a partially automated vehicle. Proposing various computer vision algorithms, techniques and methodologies, the authors also provide a general review of computer vision technologies that are relevant for driver assistance and fully autonomous vehicles. Computer Vision for Driver Assistance is the first book of its kind and will appeal to undergraduate and graduate students, researchers, engineers and those generally interested in computer vision-related topics in modern vehicle design.
This cutting-edge volume focuses on how artificial intelligence can be used to give computers the ability to imitate human sight. With contributions from researchers in diverse countries, including Thailand, Spain, Japan, Turkey, Australia, and India, the book explains the essential modules that are necessary for comprehending artificial intelligence experiences to provide machines with the power of vision. The volume also presents innovative research developments, applications, and current trends in the field. The chapters cover such topics as visual quality improvement, Parkinson’s disease diagnosis, hypertensive retinopathy detection through retinal fundus, big image data processing, N-grams for image classification, medical brain images, chatbot applications, credit score improvisation, vision-based vehicle lane detection, damaged vehicle parts recognition, partial image encryption of medical images, and image synthesis. The chapter authors show different approaches to computer vision, image processing, and frameworks for machine learning to build automated and stable applications. Deep learning is included for making immersive application-based systems, pattern recognition, and biometric systems. The book also considers efficiency and comparison at various levels of using algorithms for real-time applications, processes, and analysis.
What is Self Driving Car A self-driving car, also known as an autonomous car (AC), driverless car, robotaxi, robotic car or robo-car, is a car that is capable of operating with reduced or no human input. Self-driving cars are responsible for all driving activities, such as perceiving the environment, monitoring important systems, and controlling the vehicle, which includes navigating from origin to destination. How you will benefit (I) Insights, and validations about the following topics: Chapter 1: Self-driving car Chapter 2: Advanced driver-assistance system Chapter 3: Vehicular automation Chapter 4: Automatic parking Chapter 5: Waymo Chapter 6: Mobileye Chapter 7: History of self-driving cars Chapter 8: Tesla Autopilot Chapter 9: Cruise (autonomous vehicle) Chapter 10: Regulation of self-driving cars (II) Answering the public top questions about self driving car. (III) Real world examples for the usage of self driving car in many fields. Who this book is for Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of Self Driving Car.
This book is the first technical overview of autonomous vehicles written for a general computing and engineering audience. The authors share their practical experiences of creating autonomous vehicle systems. These systems are complex, consisting of three major subsystems: (1) algorithms for localization, perception, and planning and control; (2) client systems, such as the robotics operating system and hardware platform; and (3) the cloud platform, which includes data storage, simulation, high-definition (HD) mapping, and deep learning model training. The algorithm subsystem extracts meaningful information from sensor raw data to understand its environment and make decisions about its actions. The client subsystem integrates these algorithms to meet real-time and reliability requirements. The cloud platform provides offline computing and storage capabilities for autonomous vehicles. Using the cloud platform, we are able to test new algorithms and update the HD map—plus, train better recognition, tracking, and decision models. This book consists of nine chapters. Chapter 1 provides an overview of autonomous vehicle systems; Chapter 2 focuses on localization technologies; Chapter 3 discusses traditional techniques used for perception; Chapter 4 discusses deep learning based techniques for perception; Chapter 5 introduces the planning and control sub-system, especially prediction and routing technologies; Chapter 6 focuses on motion planning and feedback control of the planning and control subsystem; Chapter 7 introduces reinforcement learning-based planning and control; Chapter 8 delves into the details of client systems design; and Chapter 9 provides the details of cloud platforms for autonomous driving. This book should be useful to students, researchers, and practitioners alike. Whether you are an undergraduate or a graduate student interested in autonomous driving, you will find herein a comprehensive overview of the whole autonomous vehicle technology stack. If you are an autonomous driving practitioner, the many practical techniques introduced in this book will be of interest to you. Researchers will also find plenty of references for an effective, deeper exploration of the various technologies.