Download Free Computer Vision And Machine Learning In Sustainable Mobility The Case Of Road Surface Defects Book in PDF and EPUB Free Download. You can read online Computer Vision And Machine Learning In Sustainable Mobility The Case Of Road Surface Defects and write the review.

Road maintenance has traditionally been a time consuming, expensive, and manual process. Timely maintenance of roads helps in lowering rehabilitation costs, accidents, environmental pollution, while facilitating increased connectivity, trade, and growth. Easily acquirable front-view scene images are seen to be used lately for infrastructure management and road maintenance as they provide quicker, low-cost, and flexible solutions. Such scene images can easily be acquired using standard commodity cameras. In this dissertation, machine learning based approaches have been developed to analyze front-view scene images for detecting cracks automatically on road surfaces across different locations and under various conditions. This work thus contributes toward automated approaches to detect different kinds of cracks on road surfaces, thereby proposing a low-cost solution to road maintenance practices. As a result, different components are developed in this work which are sketched together to form a Decision Support System for the task of crack detection. In this study primarily three algorithmic approaches have been developed. Firstly, an unsupervised graph-based hierarchical clustering technique for road area segmentation has been developed, thus helping in detecting the road area in scene images. Secondly, a classifier and superpixel based supervised learning approach consisting of systematically identifying relevant features for detecting superpixels containing cracks has been developed. Thirdly, an unsupervised learning approach consisting of Gamma Mixture Fuzzy Model based clustering technique and keypoint matching mechanisms have been designed in this work for detecting which road pixels are crack pixels in images. Finally, this study integrates the findings and approaches to propose a Decision Support System for crack detection on road surfaces of easily acquirable front-view scene images. Evaluations performed on an experimentally collected diverse front-view scene image dataset show promising results for crack detection using the developed approaches in this work.
Smart sustainable mobility ecosystems promise to address society’s expectation of environmentally friendly on-demand mobility. While the technology stack to build such ecosystems is just around the corner in the form of connected, automated, and electric vehicles, strategies to deploy and operate such fleets in a coordinated manner must still be advanced. Most of such optimization challenges highly depend on the nature of customer demand, vehicle supply, and environmental influences. Hence, this dissertation investigates how available data streams from mobility ecosystems can be leveraged in Information Systems to solve related decision problems. The overarching goal of this work is to generate design knowledge to improve vehicle availability, provider profitability, and environmental sustainability for such ecosystems. Applying quantitative methods to real-world data from shared vehicle systems generates insights into the nature of demand and supply. Combining it with an analysis of empirical research on vehicle relocation algorithms builds the foundation for two artifact designs. The first artifact enables the development and simulation-based evaluation of operation modes for vehicle fleets. The second artifact enables artificial intelligence-based decision support for the vehicle rebalancing problem. The insights are finally incorporated and generalized to a nascent design theory on data-enabled operational decision-making in the context of smart sustainable mobility environments. The findings have multifaceted implications for researchers concerned with data-enabled value creation in Green IS, shared economy and smart mobility, and business analytics and data science. Furthermore, guidance for fleet providers to improve system attractiveness and for society to experience the potential amount of vehicle access without personal ownership is provided.
This edited book comprises papers about the impacts, benefits and challenges of connected and automated cars. It is the third volume of the LNMOB series dealing with Road Vehicle Automation. The book comprises contributions from researchers, industry practitioners and policy makers, covering perspectives from the U.S., Europe and Japan. It is based on the Automated Vehicles Symposium 2015 which was jointly organized by the Association of Unmanned Vehicle Systems International (AUVSI) and the Transportation Research Board (TRB) in Ann Arbor, Michigan, in July 2015. The topical spectrum includes, but is not limited to, public sector activities, human factors, ethical and business aspects, energy and technological perspectives, vehicle systems and transportation infrastructure. This book is an indispensable source of information for academic researchers, industrial engineers and policy makers interested in the topic of road vehicle automation.
This book highlights the latest technologies and applications of Artificial Intelligence (AI) in the domain of construction engineering and management. The construction industry worldwide has been a late bloomer to adopting digital technology, where construction projects are predominantly managed with a heavy reliance on the knowledge and experience of construction professionals. AI works by combining large amounts of data with fast, iterative processing, and intelligent algorithms (e.g., neural networks, process mining, and deep learning), allowing the computer to learn automatically from patterns or features in the data. It provides a wide range of solutions to address many challenging construction problems, such as knowledge discovery, risk estimates, root cause analysis, damage assessment and prediction, and defect detection. A tremendous transformation has taken place in the past years with the emerging applications of AI. This enables industrial participants to operate projects more efficiently and safely, not only increasing the automation and productivity in construction but also enhancing the competitiveness globally.
The Bulletin of the Atomic Scientists is the premier public resource on scientific and technological developments that impact global security. Founded by Manhattan Project Scientists, the Bulletin's iconic "Doomsday Clock" stimulates solutions for a safer world.
Feature Extraction and Image Processing for Computer Vision is an essential guide to the implementation of image processing and computer vision techniques, with tutorial introductions and sample code in Matlab. Algorithms are presented and fully explained to enable complete understanding of the methods and techniques demonstrated. As one reviewer noted, "The main strength of the proposed book is the exemplar code of the algorithms." Fully updated with the latest developments in feature extraction, including expanded tutorials and new techniques, this new edition contains extensive new material on Haar wavelets, Viola-Jones, bilateral filtering, SURF, PCA-SIFT, moving object detection and tracking, development of symmetry operators, LBP texture analysis, Adaboost, and a new appendix on color models. Coverage of distance measures, feature detectors, wavelets, level sets and texture tutorials has been extended. - Named a 2012 Notable Computer Book for Computing Methodologies by Computing Reviews - Essential reading for engineers and students working in this cutting-edge field - Ideal module text and background reference for courses in image processing and computer vision - The only currently available text to concentrate on feature extraction with working implementation and worked through derivation
The first and only comprehensive guide to best practices in winter road operations Winter maintenance operations are essential to ensure the safety, mobility, and productivity of transportation systems, especially in cold-weather climates, and responsible agencies are continually challenged to provide a high level of service in a fiscally and environmentally responsible manner. Sustainable Winter Road Operations bridges the knowledge gaps, providing the first up-to-date, authoritative, single-source overview and guide to best practices in winter road operations that considers the triple bottom line of sustainability. With contributions from experts in the field from around the world, this book takes a holistic approach to the subject. The authors address the many negative impacts on regional economies and the environment of poorly planned and inadequate winter road operations, and they make a strong case for the myriad benefits of environmentally sustainable concepts and practices. Best practice applications of materials, processes, equipment, and associated technologies and how they can improve the effectiveness and efficiency of winter operations, optimize materials usage, and minimize cost, corrosion, and environmental impacts are all covered in depth. Provides the first up-to-date, authoritative and comprehensive overview of best practices in sustainable winter road operations currently in use around the world Covers materials, processes, equipment, and associated technologies for sustainable winter road operations Brings together contributions by an international all-star team of experts with extensive experience in designing, implementing, and managing sustainable winter road operations Designed to bring professionals involved in transportation and highway maintenance and control up to speed with current best practice Sustainable Winter Road Operations is essential reading for maintenance professionals dealing with snow and ice control operations on highways, motorways and local roads. It is a valuable source of information and guidance for decision makers, researchers, and engineers in transportation engineering involved in transportation and highway maintenance. And it is an ideal textbook for advanced-level courses in transportation engineering.
Appropriate for upper-division undergraduate- and graduate-level courses in computer vision found in departments of Computer Science, Computer Engineering and Electrical Engineering. This textbook provides the most complete treatment of modern computer vision methods by two of the leading authorities in the field. This accessible presentation gives both a general view of the entire computer vision enterprise and also offers sufficient detail for students to be able to build useful applications. Students will learn techniques that have proven to be useful by first-hand experience and a wide range of mathematical methods.