Download Free Computer Studies Of Phase Transitions And Critical Phenomena Book in PDF and EPUB Free Download. You can read online Computer Studies Of Phase Transitions And Critical Phenomena and write the review.

This book is based on research carried out by the author in close collabora tion with a number of colleagues. In particular, I wish to thank Per Bak, A. John Berlinsky, Hans C. Fogedby, Barry Frank, S. 1. Knak Jensen, David Mukamel, David Pink, and Martin Zuckermann for fruitful and extremely stimulating cooperation. It is a pleasure for me to note that active interaction with most of these colleagues is still continuing. The work has been performed at several different institutions, notably the Department of Chemistry, Aarhus University, Denmark, and the Depart ment of Physics, University of British Columb~a, Canada. I wish to thank the Department of Chemistry at Aarhus University for providing me with splen did research facilities over the years. From May 1980 to August 1981, I visited the Department of Physics at the University of British Columbia and I would like to express my sincere gratitude to members ofthe department for provi ding me with excellent working conditions. My special thanks are due to Professor Myer Bloom who introduced me to the field of phase transitions in biological membranes and in whose biomembrane group I found an extre mely stimulating scientific atmosphere happily married with a most agreeable social climate. During the last two years when a major part ofthis work was carried out, I was supported by AlS De Danske Spritfabrikker through their Jubilreumsle gat of 1981. Their support is gratefully acknowledged.
As an introductory account of the theory of phase transitions and critical phenomena, this book reflects lectures given by the authors to graduate students at their departments and is thus classroom-tested to help beginners enter the field. Most parts are written as self-contained units and every new concept or calculation is explained in detail without assuming prior knowledge of the subject. The book significantly enhances and revises a Japanese version which is a bestseller in the Japanese market and is considered a standard textbook in the field. It contains new pedagogical presentations of field theory methods, including a chapter on conformal field theory, and various modern developments hard to find in a single textbook on phase transitions. Exercises are presented as the topics develop, with solutions found at the end of the book, making the text useful for self-teaching, as well as for classroom learning.
Computational methods pertaining to many branches of science, such as physics, physical chemistry and biology, are presented. The text is primarily intended for third-year undergraduate or first-year graduate students. However, active researchers wanting to learn about the new techniques of computational science should also benefit from reading the book. It treats all major methods, including the powerful molecular dynamics method, Brownian dynamics and the Monte-Carlo method. All methods are treated equally from a theroetical point of view. In each case the underlying theory is presented and then practical algorithms are displayed, giving the reader the opportunity to apply these methods directly. For this purpose exercises are included. The book also features complete program listings ready for application.
This volume comprises the proceedings of a NATO Advanced Study Institute held in Geilo, Norway, between 4 - 14 April 1989. This Institute was the tenth in a series held at Geilo on the subject of phase transitions. It was the first to be concerned with the growing area of soft condensed matter, which is neither ordinary solids nor ordinary liquids, but somewhere in between. The Institute brought together many lecturers, students and active researchers in the field from a wide range of NATO and some non-NATO countries, with financial support principally from the NATO Scientific Affairs Division but also from Institutt for energiteknikk, the Nor wegian Research Council for Science and the Humanities (NAVF), The Nordic Institute for Theoretical Atomic Physics (NORDITA), the Norwegian Physical Society and VISTA, a reserach cooperation between the Norwegian Academy of Science and Letters and Den norske stats oljeselskap a.s (STATOIL). The organizing committee would like to thank all these contributors for their help in promoting an exciting and rewarding meeting, and in doing so are confident that they echo the appreciation also of all the participants. 50ft condensed matter is characterized by weak interactions between polyatomic constituents, by important·thermal fluctuations effects, by mechanical softness and by a rich range of behaviours. The main emphasis at this Institute was on the fundamental collective physics, but prepar ation techniques and industrial applications were also considered.
The aim of this book is to familiarise the reader with the rich collection of ideas, methods and results available in the theory of critical phenomena in systems with confined geometry. The existence of universal features of the finite-size effects arising due to highly correlated classical or quantum fluctuations is explained by the finite-size scaling theory. This theory (1) offers an interpretation of experimental results on finite-size effects in real systems; (2) gives the most reliable tool for extrapolation to the thermodynamic limit of data obtained by computer simulations; (3) reveals the intimate mechanism of how the critical singularities build up in the thermodynamic limit; and (4) can be fruitfully used to explain the low-temperature behaviour of quantum critical systems.The exposition is given in a self-contained form which presumes the reader's knowledge only in the framework of standard courses on the theory of phase transitions and critical phenomena. The instructive role of simple models, both classical and quantum, is demonstrated by putting the accent on the derivation of rigorous and exact analytical results.
First published in 1990, the goal of these two volumes is to help fill the gap between theory and experiment in membrane science. Those involved with biochemistry, biophysics, pharmacology, and biology will find these volumes interesting and informative.
The field of phase transitions and critical phenomena continues to be active in research, producing a steady stream of interesting and fruitful results. No longer an area of specialist interest, it has acquired a central focus in condensed matter studies. The major aim of this serial is to provide review articles that can serve as standard references for research workers in the field, and for graduate students and others wishing to obtain reliable information on important recent developments.The two review articles in this volume complement each other in a remarkable way. Both deal with what might be called the modern geometricapproach to the properties of macroscopic systems. The first article by Georgii (et al.) describes how recent advances in the application ofgeometric ideas leads to a better understanding of pure phases and phase transitions in equilibrium systems. The second article by Alava (et al.)deals with geometrical aspects of multi-body systems in a hands-on way, going beyond abstract theory to obtain practical answers. Thecombination of computers and geometrical ideas described in this volume will doubtless play a major role in the development of statisticalmechanics in the twenty-first century.
An overview of recent experimental and theoretical developments in the field of the physics of membranes, including new insights from the past decade. The author uses classical thermal physics and physical chemistry to explain our current understanding of the membrane. He looks at domain and 'raft' formation, and discusses it in the context of thermal fluctuations that express themselves in heat capacity and elastic constants. Further topics are lipid-protein interactions, protein binding, and the effect of sterols and anesthetics. Many seemingly unrelated properties of membranes are shown to be intimately intertwined, leading for instance to a coupling between membrane state, domain formation and vesicular shape. This also applies to non-equilibrium phenomena like the propagation of density pulses during nerve activity. Also included is a discussion of the application of computer simulations on membranes. For both students and researchers of biophysics, biochemistry, physical chemistry, and soft matter physics.
This volume presents computer simulation methods and mathematical modelling of physical processes used in surface science research. It offers in-depth analysis of advanced theoretical approaches to behaviours of fluids in contact with porous, semiporous and nonporous solid surfaces. The book also explores interfacial systems for a wide variety of p