Download Free Computer Science And Educational Software Design Book in PDF and EPUB Free Download. You can read online Computer Science And Educational Software Design and write the review.

Developing educational software requires thinking, problematizing, representing, modeling, implementing and analyzing pedagogical objectives and issues, as well as conceptual models and software architectures. Computer scientists face the difficulty of understanding the particular issues and phenomena to be taken into account in educational software projects and of avoiding a naïve technocentered perspective. On the other hand, actors with backgrounds in human or social sciences face the difficulty of understanding software design and implementation issues, and how computer scientists engage in these tasks. Tchounikine argues that these difficulties cannot be solved by building a kind of “general theory” or “general engineering methodology” to be adopted by all actors for all projects: educational software projects may correspond to very different realities, and may be conducted within very different perspectives and with very different matters of concern. Thus the issue of understanding each others’ perspectives and elaborating some common ground is to be considered in context, within the considered project or perspective. To this end, he provides the reader with a framework and means for actively taking into account the relationships between pedagogical settings and software, and for working together in a multidisciplinary way to develop educational software. His book is for actors engaged in research or development projects which require inventing, designing, adapting, implementing or analyzing educational software. The core audience is Master’s and PhD students, researchers and engineers from computer science or human and social sciences (e.g., education, psychology, pedagogy, philosophy, communications or sociology) interested in the issues raised by educational software design and analysis and in the variety of perspectives that may be adopted.
This book provides an overview of how to approach computer science education research from a pragmatic perspective. It represents the diversity of traditions and approaches inherent in this interdisciplinary area, while also providing a structure within which to make sense of that diversity. It provides multiple 'entry points'- to literature, to me
This classroom-tested textbook presents an active-learning approach to the foundational concepts of software design. These concepts are then applied to a case study, and reinforced through practice exercises, with the option to follow either a structured design or object-oriented design paradigm. The text applies an incremental and iterative software development approach, emphasizing the use of design characteristics and modeling techniques as a way to represent higher levels of design abstraction, and promoting the model-view-controller (MVC) architecture. Topics and features: provides a case study to illustrate the various concepts discussed throughout the book, offering an in-depth look at the pros and cons of different software designs; includes discussion questions and hands-on exercises that extend the case study and apply the concepts to other problem domains; presents a review of program design fundamentals to reinforce understanding of the basic concepts; focuses on a bottom-up approach to describing software design concepts; introduces the characteristics of a good software design, emphasizing the model-view-controller as an underlying architectural principle; describes software design from both object-oriented and structured perspectives; examines additional topics on human-computer interaction design, quality assurance, secure design, design patterns, and persistent data storage design; discusses design concepts that may be applied to many types of software development projects; suggests a template for a software design document, and offers ideas for further learning. Students of computer science and software engineering will find this textbook to be indispensable for advanced undergraduate courses on programming and software design. Prior background knowledge and experience of programming is required, but familiarity in software design is not assumed.
Computing education is in enormous demand. Many students (both children and adult) are realizing that they will need programming in the future. This book presents the argument that they are not all going to use programming in the same way and for the same purposes. What do we mean when we talk about teaching everyone to program? When we target a broad audience, should we have the same goals as computer science education for professional software developers? How do we design computing education that works for everyone? This book proposes use of a learner-centered design approach to create computing education for a broad audience. It considers several reasons for teaching computing to everyone and how the different reasons lead to different choices about learning goals and teaching methods. The book reviews the history of the idea that programming isn’t just for the professional software developer. It uses research studies on teaching computing in liberal arts programs, to graphic designers, to high school teachers, in order to explore the idea that computer science for everyone requires us to re-think how we teach and what we teach. The conclusion describes how we might create computing education for everyone.
This book provides guidelines for practicing design science in the fields of information systems and software engineering research. A design process usually iterates over two activities: first designing an artifact that improves something for stakeholders and subsequently empirically investigating the performance of that artifact in its context. This “validation in context” is a key feature of the book - since an artifact is designed for a context, it should also be validated in this context. The book is divided into five parts. Part I discusses the fundamental nature of design science and its artifacts, as well as related design research questions and goals. Part II deals with the design cycle, i.e. the creation, design and validation of artifacts based on requirements and stakeholder goals. To elaborate this further, Part III presents the role of conceptual frameworks and theories in design science. Part IV continues with the empirical cycle to investigate artifacts in context, and presents the different elements of research problem analysis, research setup and data analysis. Finally, Part V deals with the practical application of the empirical cycle by presenting in detail various research methods, including observational case studies, case-based and sample-based experiments and technical action research. These main sections are complemented by two generic checklists, one for the design cycle and one for the empirical cycle. The book is written for students as well as academic and industrial researchers in software engineering or information systems. It provides guidelines on how to effectively structure research goals, how to analyze research problems concerning design goals and knowledge questions, how to validate artifact designs and how to empirically investigate artifacts in context – and finally how to present the results of the design cycle as a whole.
Developing educational software requires thinking, problematizing, representing, modeling, implementing and analyzing pedagogical objectives and issues, as well as conceptual models and software architectures. Computer scientists face the difficulty of understanding the particular issues and phenomena to be taken into account in educational software projects and of avoiding a naïve technocentered perspective. On the other hand, actors with backgrounds in human or social sciences face the difficulty of understanding software design and implementation issues, and how computer scientists engage in these tasks. Tchounikine argues that these difficulties cannot be solved by building a kind of “general theory” or “general engineering methodology” to be adopted by all actors for all projects: educational software projects may correspond to very different realities, and may be conducted within very different perspectives and with very different matters of concern. Thus the issue of understanding each others’ perspectives and elaborating some common ground is to be considered in context, within the considered project or perspective. To this end, he provides the reader with a framework and means for actively taking into account the relationships between pedagogical settings and software, and for working together in a multidisciplinary way to develop educational software. His book is for actors engaged in research or development projects which require inventing, designing, adapting, implementing or analyzing educational software. The core audience is Master’s and PhD students, researchers and engineers from computer science or human and social sciences (e.g., education, psychology, pedagogy, philosophy, communications or sociology) interested in the issues raised by educational software design and analysis and in the variety of perspectives that may be adopted.
Improving Computer Science Education examines suitable theoretical frameworks for conceptualizing teaching and learning computer science. This highly useful book provides numerous examples of practical, "real world" applications of major computer science information topics, such as: • Spreadsheets • Databases • Programming Each chapter concludes with a section that summarzies recommendations for teacher professional development. Traditionally, computer science education has been skills-focused and disconnected from the reality students face after they leave the classroom. Improving Computer Science Education makes the subject matter useful and meaningful by connecting it explicitly to students' everyday lives.
This volume provides an overview of current work in software engineering techniques that can enhance the quality of software. The chapters of this volume, organized by key topic area, create an agenda for the IFIP Working Conference on Software Engineering Techniques, SET 2006. The seven sections of the volume address the following areas: software architectures, modeling, project management, software quality, analysis and verification methods, data management, and software maintenance.
The first volume of this popular handbook mirrors the modern taxonomy of computer science and software engineering as described by the Association for Computing Machinery (ACM) and the IEEE Computer Society (IEEE-CS). Written by established leading experts and influential young researchers, it examines the elements involved in designing and implementing software, new areas in which computers are being used, and ways to solve computing problems. The book also explores our current understanding of software engineering and its effect on the practice of software development and the education of software professionals.
In the Guide to the Software Engineering Body of Knowledge (SWEBOK(R) Guide), the IEEE Computer Society establishes a baseline for the body of knowledge for the field of software engineering, and the work supports the Society's responsibility to promote the advancement of both theory and practice in this field. It should be noted that the Guide does not purport to define the body of knowledge but rather to serve as a compendium and guide to the knowledge that has been developing and evolving over the past four decades. Now in Version 3.0, the Guide's 15 knowledge areas summarize generally accepted topics and list references for detailed information. The editors for Version 3.0 of the SWEBOK(R) Guide are Pierre Bourque (Ecole de technologie superieure (ETS), Universite du Quebec) and Richard E. (Dick) Fairley (Software and Systems Engineering Associates (S2EA)).