Download Free Computer Science And Education Teaching And Curriculum Book in PDF and EPUB Free Download. You can read online Computer Science And Education Teaching And Curriculum and write the review.

Drawing together the most up-to-date research from experts all across the world, the second edition of Computer Science Education offers the most up-to-date coverage available on this developing subject, ideal for building confidence of new pre-service and in-service educators teaching a new discipline. It provides an international overview of key concepts, pedagogical approaches and assessment practices. Highlights of the second edition include: - New sections on machine learning and data-driven (epistemic) programming - A new focus on equity and inclusion in computer science education - Chapters updated throughout, including a revised chapter on relating ethical and societal aspects to knowledge-rich aspects of computer science education - A new set of chapters on the learning of programming, including design, pedagogy and misconceptions - A chapter on the way we use language in the computer science classroom. The book is structured to support the reader with chapter outlines, synopses and key points. Explanations of key concepts, real-life examples and reflective points keep the theory grounded in classroom practice. The book is accompanied by a companion website, including online summaries for each chapter, 3-minute video summaries by each author and an archived chapter on taxonomies and competencies from the first edition.
"Computer science has emerged as a key driver of innovation in the 21st century. Preparing teachers to teach computer science, however, remains an enormous challenge as there are few highly qualified teachers who can teach computer science or integrate computer science content into K-12 curricula. To address this challenge, NSF established the CS10K program with the aim of preparing 10,000 teachers in 10,000 high schools teaching computer science curricula. While this effort is still under-way, there has not been a systematic attempt to capture the work done in this area. In order to prepare a generation of teachers who are capable of delivering computer science content to students, we must identify research-based examples, pedagogical strategies and policies that can facilitate changes in teacher knowledge and practices. The purpose of this project is to provide examples that could help guide the design and delivery of effective teacher preparation on the teaching of computer science concepts. This book identifies promising pathways, pedagogical strategies and policies that help pre-service and in-service teachers infuse computing ideas in their curricula as well as teach stand-alone computing courses. The book focuses on pedagogical practices for developing and assessing pre-service teacher knowledge of computer science, course design models for pre-service teachers, and discussion of policies that can support the teaching of computer science. The primary audience of the book will be students and faculty in educational technology, educational or cognitive psychology, learning theory, curriculum and instruction, computer science, instructional systems and learning sciences"--
This textbook presents both a conceptual framework and detailed implementation guidelines for computer science (CS) teaching. Updated with the latest teaching approaches and trends, and expanded with new learning activities, the content of this new edition is clearly written and structured to be applicable to all levels of CS education and for any teaching organization. Features: provides 110 detailed learning activities; reviews curriculum and cross-curriculum topics in CS; explores the benefits of CS education research; describes strategies for cultivating problem-solving skills, for assessing learning processes, and for dealing with pupils’ misunderstandings; proposes active-learning-based classroom teaching methods, including lab-based teaching; discusses various types of questions that a CS instructor or trainer can use for a range of teaching situations; investigates thoroughly issues of lesson planning and course design; examines the first field teaching experiences gained by CS teachers.
Improving Computer Science Education examines suitable theoretical frameworks for conceptualizing teaching and learning computer science. This highly useful book provides numerous examples of practical, "real world" applications of major computer science information topics, such as: • Spreadsheets • Databases • Programming Each chapter concludes with a section that summarzies recommendations for teacher professional development. Traditionally, computer science education has been skills-focused and disconnected from the reality students face after they leave the classroom. Improving Computer Science Education makes the subject matter useful and meaningful by connecting it explicitly to students' everyday lives.
Coding teaches our students the essence of logical thinking and problem solving while also preparing them for a world in which computing is becoming increasingly pervasive. While there's excitement and enthusiasm about programming becoming an intrinsic part of K-12 curricula the world over, there's also growing anxiety about preparing teachers to teach effectively at all grade levels.This book strives to be an essential, enduring, practical guide for every K-12 teacher anywhere who is either teaching or planning to teach computer science and programming at any grade level. To this end, readers will discover:? An A-to-Z organization that affords comprehensive insight into teaching introductory programming.? 26 chapters that cover foundational concepts, practices and well-researched pedagogies related to teaching introductory programming as an integral part of K-12 computer science. Cumulatively these chapters address the two salient building blocks of effective teaching of introductory programming-what content to teach (concepts and practices) and how to teach (pedagogy).? Concrete ideas and rich grade-appropriate examples inspired by practice and research for classroom use.? Perspectives and experiences shared by educators and scholars who are actively practicing and/or examiningthe teaching of computer science and programming in K-12 classrooms.
Empower tomorrow’s tech innovators Our students are avid users and consumers of technology. Isn’t it time that they see themselves as the next technological innovators, too? Computational Thinking and Coding for Every Student is the beginner’s guide for K-12 educators who want to learn to integrate the basics of computer science into their curriculum. Readers will find Practical strategies for teaching computational thinking and the beginning steps to introduce coding at any grade level, across disciplines, and during out-of-school time Instruction-ready lessons and activities for every grade Specific guidance for designing a learning pathway for elementary, middle, or high school students Justification for making coding and computer science accessible to all A glossary with definitions of key computer science terms, a discussion guide with tips for making the most of the book, and companion website with videos, activities, and other resources Momentum for computer science education is growing as educators and parents realize how fundamental computing has become for the jobs of the future. This book is for educators who see all of their students as creative thinkers and active contributors to tomorrow’s innovations. "Kiki Prottsman and Jane Krauss have been at the forefront of the rising popularity of computer science and are experts in the issues that the field faces, such as equity and diversity. In this book, they’ve condensed years of research and practitioner experience into an easy to read narrative about what computer science is, why it is important, and how to teach it to a variety of audiences. Their ideas aren’t just good, they are research-based and have been in practice in thousands of classrooms...So to the hundreds and thousands of teachers who are considering, learning, or actively teaching computer science—this book is well worth your time." Pat Yongpradit Chief Academic Officer, Code.org
This book provides an overview of how to approach computer science education research from a pragmatic perspective. It represents the diversity of traditions and approaches inherent in this interdisciplinary area, while also providing a structure within which to make sense of that diversity. It provides multiple 'entry points'- to literature, to methods, to topics Part One, 'The Field and the Endeavor', frames the nature and conduct of research in computer science education. Part Two, 'Perspectives and Approaches', provides a number of grounded chapters on particular topics or themes, written by experts in each domain. These chapters cover the following topics: * design * novice misconceptions * programming environments for novices * algorithm visualisation * a schema theory view on learning to program * critical theory as a theoretical approach to computer science education research Juxtaposed and taken together, these chapters indicate just how varied the perspectives and research approaches can be. These chapters, too, act as entry points, with illustrations drawn from published work.
The growing trend for high-quality computer science in school curricula has drawn recent attention in classrooms. With an increasingly information-based and global society, computer science education coupled with computational thinking has become an integral part of an experience for all students, given that these foundational concepts and skills intersect cross-disciplinarily with a set of mental competencies that are relevant in their daily lives and work. While many agree that these concepts should be taught in schools, there are systematic inequities that exist to prevent students from accessing related computer science skills. The Handbook of Research on Equity in Computer Science in P-16 Education is a comprehensive reference book that highlights relevant issues, perspectives, and challenges in P-16 environments that relate to the inequities that students face in accessing computer science or computational thinking and examines methods for challenging these inequities in hopes of allowing all students equal opportunities for learning these skills. Additionally, it explores the challenges and policies that are created to limit access and thus reinforce systems of power and privilege. The chapters highlight issues, perspectives, and challenges faced in P-16 environments that include gender and racial imbalances, population of growing computer science teachers who are predominantly white and male, teacher preparation or lack of faculty expertise, professional development programs, and more. It is intended for teacher educators, K-12 teachers, high school counselors, college faculty in the computer science department, school administrators, curriculum and instructional designers, directors of teaching and learning centers, policymakers, researchers, and students.
This book provides a step-by-step guide to teaching computing at secondary level. It offers an entire framework for planning and delivering the curriculum and shows you how to create a supportive environment for students in which all can enjoy computing. The focus throughout is on giving students the opportunity to think, program, build and create with confidence and imagination, transforming them from users to creators of technology. In each chapter, detailed research and teaching theory is combined with resources to aid the practitioner, including case studies, planning templates and schemes of work that can be easily adapted. The book is split into three key parts: planning, delivery, and leadership and management, and covers topics such as: curriculum and assessment design lesson planning cognitive science behind learning computing pedagogy and instructional principles mastery learning in computing how to develop students’ computational thinking supporting students with special educational needs and disabilities encouraging more girls to study computing actions, habits and routines of effective computing teachers behaviour management and developing a strong classroom culture how to support and lead members of your team. Teaching Computing in Secondary Schools is essential reading for trainee and practising teachers, and will prove to be an invaluable resource in helping teaching professionals ensure that students acquire a wide range of computing skills which will support them in whatever career they choose.
A completely revised edition, offering new design recipes for interactive programs and support for images as plain values, testing, event-driven programming, and even distributed programming. This introduction to programming places computer science at the core of a liberal arts education. Unlike other introductory books, it focuses on the program design process, presenting program design guidelines that show the reader how to analyze a problem statement, how to formulate concise goals, how to make up examples, how to develop an outline of the solution, how to finish the program, and how to test it. Because learning to design programs is about the study of principles and the acquisition of transferable skills, the text does not use an off-the-shelf industrial language but presents a tailor-made teaching language. For the same reason, it offers DrRacket, a programming environment for novices that supports playful, feedback-oriented learning. The environment grows with readers as they master the material in the book until it supports a full-fledged language for the whole spectrum of programming tasks. This second edition has been completely revised. While the book continues to teach a systematic approach to program design, the second edition introduces different design recipes for interactive programs with graphical interfaces and batch programs. It also enriches its design recipes for functions with numerous new hints. Finally, the teaching languages and their IDE now come with support for images as plain values, testing, event-driven programming, and even distributed programming.