Download Free Computer Architecture And Logic Design Book in PDF and EPUB Free Download. You can read online Computer Architecture And Logic Design and write the review.

A COMPREHENSIVE GUIDE TO THE DESIGN & ORGANIZATION OF MODERN COMPUTING SYSTEMS Digital Logic Design and Computer Organization with Computer Architecture for Security provides practicing engineers and students with a clear understanding of computer hardware technologies. The fundamentals of digital logic design as well as the use of the Verilog hardware description language are discussed. The book covers computer organization and architecture, modern design concepts, and computer security through hardware. Techniques for designing both small and large combinational and sequential circuits are thoroughly explained. This detailed reference addresses memory technologies, CPU design and techniques to increase performance, microcomputer architecture, including "plug and play" device interface, and memory hierarchy. A chapter on security engineering methodology as it applies to computer architecture concludes the book. Sample problems, design examples, and detailed diagrams are provided throughout this practical resource. COVERAGE INCLUDES: Combinational circuits: small designs Combinational circuits: large designs Sequential circuits: core modules Sequential circuits: small designs Sequential circuits: large designs Memory Instruction set architecture Computer architecture: interconnection Memory system Computer architecture: security
Digital Design and Computer Architecture, Second Edition, takes a unique and modern approach to digital design, introducing the reader to the fundamentals of digital logic and then showing step by step how to build a MIPS microprocessor in both Verilog and VHDL. This new edition combines an engaging and humorous writing style with an updated and hands-on approach to digital design. It presents new content on I/O systems in the context of general purpose processors found in a PC as well as microcontrollers found almost everywhere. Beginning with digital logic gates and progressing to the design of combinational and sequential circuits, the book uses these fundamental building blocks as the basis for the design of an actual MIPS processor. It provides practical examples of how to interface with peripherals using RS232, SPI, motor control, interrupts, wireless, and analog-to-digital conversion. SystemVerilog and VHDL are integrated throughout the text in examples illustrating the methods and techniques for CAD-based circuit design. There are also additional exercises and new examples of parallel and advanced architectures, practical I/O applications, embedded systems, and heterogeneous computing, plus a new appendix on C programming to strengthen the connection between programming and processor architecture. This new edition will appeal to professional computer engineers and to students taking a course that combines digital logic and computer architecture. - Updated based on instructor feedback with more exercises and new examples of parallel and advanced architectures, practical I/O applications, embedded systems, and heterogeneous computing - Presents digital system design examples in both VHDL and SystemVerilog (updated for the second edition from Verilog), shown side-by-side to compare and contrast their strengths - Includes a new chapter on C programming to provide necessary prerequisites and strengthen the connection between programming and processor architecture - Companion Web site includes links to Xilinx CAD tools for FPGA design, lecture slides, laboratory projects, and solutions to exercises - Instructors can also register at textbooks.elsevier.com for access to: Solutions to all exercises (PDF), Lab materials with solutions, HDL for textbook examples and exercise solutions, Lecture slides (PPT), Sample exams, Sample course syllabus, Figures from the text (JPG, PPT)
This textbook provides semester-length coverage of computer architecture and design, providing a strong foundation for students to understand modern computer system architecture and to apply these insights and principles to future computer designs. It is based on the author’s decades of industrial experience with computer architecture and design, as well as with teaching students focused on pursuing careers in computer engineering. Unlike a number of existing textbooks for this course, this one focuses not only on CPU architecture, but also covers in great detail in system buses, peripherals and memories. This book teaches every element in a computing system in two steps. First, it introduces the functionality of each topic (and subtopics) and then goes into “from-scratch design” of a particular digital block from its architectural specifications using timing diagrams. The author describes how the data-path of a certain digital block is generated using timing diagrams, a method which most textbooks do not cover, but is valuable in actual practice. In the end, the user is ready to use both the design methodology and the basic computing building blocks presented in the book to be able to produce industrial-strength designs.
The new RISC-V Edition of Computer Organization and Design features the RISC-V open source instruction set architecture, the first open source architecture designed to be used in modern computing environments such as cloud computing, mobile devices, and other embedded systems. With the post-PC era now upon us, Computer Organization and Design moves forward to explore this generational change with examples, exercises, and material highlighting the emergence of mobile computing and the Cloud. Updated content featuring tablet computers, Cloud infrastructure, and the x86 (cloud computing) and ARM (mobile computing devices) architectures is included. An online companion Web site provides advanced content for further study, appendices, glossary, references, and recommended reading. - Features RISC-V, the first such architecture designed to be used in modern computing environments, such as cloud computing, mobile devices, and other embedded systems - Includes relevant examples, exercises, and material highlighting the emergence of mobile computing and the cloud
It is a great pleasure to write a preface to this book. In my view, the content is unique in that it blends traditional teaching approaches with the use of mathematics and a mainstream Hardware Design Language (HDL) as formalisms to describe key concepts. The book keeps the “machine” separate from the “application” by strictly following a bottom-up approach: it starts with transistors and logic gates and only introduces assembly language programs once their execution by a processor is clearly de ned. Using a HDL, Verilog in this case, rather than static circuit diagrams is a big deviation from traditional books on computer architecture. Static circuit diagrams cannot be explored in a hands-on way like the corresponding Verilog model can. In order to understand why I consider this shift so important, one must consider how computer architecture, a subject that has been studied for more than 50 years, has evolved. In the pioneering days computers were constructed by hand. An entire computer could (just about) be described by drawing a circuit diagram. Initially, such d- grams consisted mostly of analogue components before later moving toward d- ital logic gates. The advent of digital electronics led to more complex cells, such as half-adders, ip- ops, and decoders being recognised as useful building blocks.
This text is for first and second year undergraduates studying the fundamentals of computer engineering, digital logic and microprocessors. Assuming little background in computer systems, the book presents the basics then illustrates them with and examination of 8086 architecture and programming. The intention is to teach digital logic by using programmable logic devices (PLDs) and the CUPL language.
Designers of high-speed integrated circuits face a bewildering array of choices and too often spend frustrating days tweaking gates to meet speed targets. Logical Effort: Designing Fast CMOS Circuits makes high speed design easier and more methodical, providing a simple and broadly applicable method for estimating the delay resulting from factors such as topology, capacitance, and gate sizes. The brainchild of circuit and computer graphics pioneers Ivan Sutherland and Bob Sproull, "logical effort" will change the way you approach design challenges. This book begins by equipping you with a sound understanding of the method's essential procedures and concepts-so you can start using it immediately. Later chapters explore the theory and finer points of the method and detail its specialized applications. Features Explains the method and how to apply it in two practically focused chapters. Improves circuit design intuition by teaching simple ways to discern the consequences of topology and gate size decisions. Offers easy ways to choose the fastest circuit from among an array of potential circuit designs. Reduces the time spent on tweaking and simulations-so you can rapidly settle on a good design. Offers in-depth coverage of specialized areas of application for logical effort: skewed or unbalanced gates, other circuit families (including pseudo-NMOS and domino), wide structures such as decoders, and irregularly forking circuits. Presents a complete derivation of the method-so you see how and why it works.
An introductory text to computer architecture, this comprehensive volume covers the concepts from logic gates to advanced computer architecture. It comes with a full spectrum of exercises and web-downloadable support materials, including assembler and simulator, which can be used in the context of different courses. The authors also make available a hardware description, which can be used in labs and assignments, for hands-on experimentation with an actual, simple processor.This unique compendium is a useful reference for undergraduates, graduates and professionals majoring in computer engineering, circuits and systems, software engineering, biomedical engineering and aerospace engineering.Related Link(s)
A no-nonsense, practical guide to current and future processor and computer architectures, enabling you to design computer systems and develop better software applications across a variety of domains Key Features Understand digital circuitry with the help of transistors, logic gates, and sequential logic Examine the architecture and instruction sets of x86, x64, ARM, and RISC-V processors Explore the architecture of modern devices such as the iPhone X and high-performance gaming PCs Book DescriptionAre you a software developer, systems designer, or computer architecture student looking for a methodical introduction to digital device architectures but overwhelmed by their complexity? This book will help you to learn how modern computer systems work, from the lowest level of transistor switching to the macro view of collaborating multiprocessor servers. You'll gain unique insights into the internal behavior of processors that execute the code developed in high-level languages and enable you to design more efficient and scalable software systems. The book will teach you the fundamentals of computer systems including transistors, logic gates, sequential logic, and instruction operations. You will learn details of modern processor architectures and instruction sets including x86, x64, ARM, and RISC-V. You will see how to implement a RISC-V processor in a low-cost FPGA board and how to write a quantum computing program and run it on an actual quantum computer. By the end of this book, you will have a thorough understanding of modern processor and computer architectures and the future directions these architectures are likely to take.What you will learn Get to grips with transistor technology and digital circuit principles Discover the functional elements of computer processors Understand pipelining and superscalar execution Work with floating-point data formats Understand the purpose and operation of the supervisor mode Implement a complete RISC-V processor in a low-cost FPGA Explore the techniques used in virtual machine implementation Write a quantum computing program and run it on a quantum computer Who this book is for This book is for software developers, computer engineering students, system designers, reverse engineers, and anyone looking to understand the architecture and design principles underlying modern computer systems from tiny embedded devices to warehouse-size cloud server farms. A general understanding of computer processors is helpful but not required.