Download Free Computer Aided Systems Theory Eurocast 2011 Book in PDF and EPUB Free Download. You can read online Computer Aided Systems Theory Eurocast 2011 and write the review.

The two-volume proceedings, LNCS 6927 and LNCS 6928, constitute the papers presented at the 13th International Conference on Computer Aided Systems Theory, EUROCAST 2011, held in February 2011 in Las Palmas de Gran Canaria, Spain. The total of 160 papers presented were carefully reviewed and selected for inclusion in the books. The contributions are organized in topical sections on concepts and formal tools; software applications; computation and simulation in modelling biological systems; intelligent information processing; heurist problem solving; computer aided systems optimization; model-based system design, simulation, and verification; computer vision and image processing; modelling and control of mechatronic systems; biomimetic software systems; computer-based methods for clinical and academic medicine; modeling and design of complex digital systems; mobile and autonomous transportation systems; traffic behaviour, modelling and optimization; mobile computing platforms and technologies; and engineering systems applications.
The two-volume set LNCS 8111 and LNCS 8112 constitute the papers presented at the 14th International Conference on Computer Aided Systems Theory, EUROCAST 2013, held in February 2013 in Las Palmas de Gran Canaria, Spain. The total of 131 papers presented were carefully reviewed and selected for inclusion in the books. The contributions are organized in topical sections on modelling biological systems; systems theory and applications; intelligent information processing; theory and applications of metaheuristic algorithms; model-based system design, verification and simulation; process modeling simulation and system optimization; mobile and autonomous transportation systems; computer vision, sensing, image processing and medical applications; computer-based methods and virtual reality for clinical and academic medicine; digital signal processing methods and applications; mechatronic systems, robotics and marine robots; mobile computing platforms and technologies; systems applications.
The two-volume set LNCS 10671 and 10672 constitutes the thoroughly refereed proceedings of the 16th International Conference on Computer Aided Systems Theory, EUROCAST 2017, held in Las Palmas de Gran Canaria, Spain, in February 2017. The 117 full papers presented were carefully reviewed and selected from 160 submissions. The papers are organized in topical sections on: pioneers and landmarks in the development of information and communication technologies; systems theory, socio-economic systems and applications; theory and applications of metaheuristic algorithms; stochastic models and applications to natural, social and technical systems; model-based system design, verification and simulation; applications of signal processing technology; algebraic and combinatorial methods in signal and pattern analysis; computer vision, deep learning and applications; computer and systems based methods and electronics technologies in medicine; intelligent transportation systems and smart mobility.
The two-volume set LNCS 12013 and 12014 constitutes the thoroughly refereed proceedings of the 17th International Conference on Computer Aided Systems Theory, EUROCAST 2019, held in Las Palmas de Gran Canaria, Spain, in February 2019. The 123 full papers presented were carefully reviewed and selected from 172 submissions. The papers are organized in the following topical sections: Part I: systems theory and applications; pioneers and landmarks in the development of information and communication technologies; stochastic models and applications to natural, social and technical systems; theory and applications of metaheuristic algorithms; model-based system design, verification and simulation. Part II: applications of signal processing technology; artificial intelligence and data mining for intelligent transportation systems and smart mobility; computer vision, machine learning for image analysis and applications; computer and systems based methods and electronic technologies in medicine; advances in biomedical signal and image processing; systems concepts and methods in touristic flows; systems in industrial robotics, automation and IoT.
This volume constitutes the papers presented at the 15th International Conference on Computer Aided Systems Theory, EUROCAST 2015, held in February 2015 in Las Palmas de Gran Canaria, Spain. The total of 107 papers presented were carefully reviewed and selected for inclusion in the book. The contributions are organized in topical sections on Systems Theory and Applications; Modelling Biological Systems; Intelligent Information Processing; Theory and Applications of Metaheuristic Algorithms; Computer Methods, Virtual Reality and Image Processing for Clinical and Academic Medicine; Signals and Systems in Electronics; Model-Based System Design, Verification, and Simulation; Digital Signal Processing Methods and Applications; Modelling and Control of Robots; Mobile Platforms, Autonomous and Computing Traffic Systems; Cloud and Other Computing Systems; and Marine Sensors and Manipulators.
This carefully edited and reviewed volume addresses the increasingly popular demand for seeking more clarity in the data that we are immersed in. It offers excellent examples of the intelligent ubiquitous computation, as well as recent advances in systems engineering and informatics. The content represents state-of-the-art foundations for researchers in the domain of modern computation, computer science, system engineering and networking, with many examples that are set in industrial application context. The book includes the carefully selected best contributions to APCASE 2014, the 2nd Asia-Pacific Conference on Computer Aided System Engineering, held February 10-12, 2014 in South Kuta, Bali, Indonesia. The book consists of four main parts that cover data-oriented engineering science research in a wide range of applications: computational models and knowledge discovery; communications networks and cloud computing; computer-based systems; and data-oriented and software-intensive systems.
The amount of digital systems supporting our daily life is increasing continuously. Improved technical facilities for their production have led to growing challenges for engineers and scientists working in the Boolean domain. A Boolean variable can only carry two different Boolean values: FALSE or TRUE (0 or 1), and has the best interference resistance in technical systems. However, a Boolean function exponentially depends on the number of its variables. This exponential complexity is the reason for major problems in the process of design and realization of circuits. According to Moore’s Law, the complexity of digital systems approximately doubles every 18 months. This requires comprehensive knowledge and techniques to solve very complex Boolean problems. This volume represents the third book in a series that provides further insights into the Boolean domain. Part 1 explores powerful models, methods and techniques which improve the efficiency in solving Boolean problems of extreme complexity. The universality of Boolean equations as a model to solve Non-deterministic Polynomial-time (NP) hard problems, as well as special properties of index generation functions, spectral techniques, or relational approaches, is discussed here. Both hardware devices, such as Field Programmable Gate Arrays (FPGAs) or Graphics Processing Units (GPUs), and optimized algorithms realized in software contribute to the acceleration of Boolean calculations. Part 2 contributes to the synthesis and visualization of digital circuits, and provides interesting new solutions for several types of circuits. A comprehensive collection of benchmarks supports the evolution of both existing and new synthesis approaches. The continuous reduction of the size of the transistors increases the challenges with regard to the reliability of the circuits. Part 3 describes several new approaches for the synthesis of reversible circuits. These approaches, as well as a classification of reversible functions, extend the basis of future quantum computers.
The concept of CAST as Computer Aided Systems Theory, was introduced by F. Pichler in the late 1980s to include those computer theoretical and practical developments as tools to solve problems in System Science. It was considered as the third component (the other two being CAD and CAM) necessary to build the path from Computer and Systems Sciences to practical developments in Science and Engineering. The University of Linz organized the first CAST workshop in April 1988, which demonstrated the acceptance of the concepts by the scientific and technical community. Next, the University of Las Palmas de Gran Canaria joined the University of Linz to organize the first international meeting on CAST, (Las Palmas, February 1989), under the name EUROCAST’89. This was a very successful gathering of systems theorists, computer scientists, and engineers from most European countries, North America, and Japan. It was agreed that EUROCAST international conferences would be organized every two years, alternating between Las Palmas de Gran Canaria and a continental European location. Thus, successive EUROCAST meetings have taken place in Krems (1991), Las Palmas (1993), Innsbruck (1995), Las Palmas (1997), and Vienna (1999), in addition to an extra-European CAST Conference in Ottawa in 1994.
The greatly expanded and updated 3rd edition of this textbook offers the reader a comprehensive introduction to the concepts of logic functions and equations and their applications across computer science and engineering. The authors’ approach emphasizes a thorough understanding of the fundamental principles as well as numerical and computer-based solution methods. The book provides insight into applications across propositional logic, binary arithmetic, coding, cryptography, complexity, logic design, and artificial intelligence. Updated throughout, some major additions for the 3rd edition include: a new chapter about the concepts contributing to the power of XBOOLE; a new chapter that introduces into the application of the XBOOLE-Monitor XBM 2; many tasks that support the readers in amplifying the learned content at the end of the chapters; solutions of a large subset of these tasks to confirm learning success; challenging tasks that need the power of the XBOOLE software for their solution. The XBOOLE-monitor XBM 2 software is used to solve the exercises; in this way the time-consuming and error-prone manipulation on the bit level is moved to an ordinary PC, more realistic tasks can be solved, and the challenges of thinking about algorithms leads to a higher level of education.
Linear Incremental Hydraulic Actuators combine one or more short-stroke cylinders, and two or more engaging/disengaging mechanisms into one actuator with long, medium, or even unlimited stroke length. The motion of each single short-stroke actuator concatenated by the engaging/disengaging mechanisms forms the motion of the linear incremental hydraulic actuator. The patterns of how these motions are concatenated form the gaits of a specific linear incremental hydraulic actuator. Linear incremental hydraulic actuators may have more than one gait. In an application, the gaits may be combined to achieve optimal performance at various operating points. The distinguishing characteristic of linear incremental hydraulic actuators is the incremental motion. The term incremental actuator is seen as analogous to the incremental versus absolute position sensor. Incremental actuators realize naturally relative positioning. Incremental motion means also that the behavior does not depend on an absolute position but only on the relative position within a cycle or step. Incremental actuators may realize discrete incremental or continuous incremental motion. Discrete incremental actuators can only approach discrete positions, whereby stepper drives are one prominent example. In contrast, continuous incremental actuators may approach any position. Linear electric motors are one example of continuous incremental actuators. The actuator has no inherent limitation in stroke length, as every step or cycle adds only to the state at the beginning of the step or cycle and does not depend on the absolute position. This led to the alternative working title Hydraulic Infinite Linear Actuator. Linear incremental hydraulic actuator provides long stroke, high force, and linear motion and has the potential to decrease the necessary resource usage,minimize environmental impact, e.g. from potential oil spillage,extend the range of feasible products: longer, stiffer, better, etc. This thesis presents an analysis of the characteristics and properties of linear incremental hydraulic actuators as well as the gaits and possible realizations of some gaits. The gait for continuous, smooth motion with two cylinders is comprehensively studied and a control concept for the tracking problem is proposed. The control concept encapsulates the complexity of the linear incremental hydraulic actuator so that an application does not have to deal with it. One other gait, the ballistic gait, which realizes fast, energy-efficient motion, enabling energy recuperation is studied.