Download Free Computer Aided Drug Discovery Methods A Brief Introduction Book in PDF and EPUB Free Download. You can read online Computer Aided Drug Discovery Methods A Brief Introduction and write the review.

Computer-Aided Drug Discovery Methods: A Brief Introduction explores the cutting-edge field at the intersection of computational science and medicinal chemistry. This comprehensive volume navigates from foundational concepts to advanced methodologies, illuminating how computational tools accelerate the discovery of new therapeutics. Beginning with an overview of drug discovery principles, the book explains topics such as pharmacophore modeling, molecular dynamics simulations, and molecular docking. It discusses the application of density functional theory and the role of artificial intelligence in therapeutic development, showcasing successful case studies and innovations in COVID-19 research. Ideal for undergraduate and graduate students, as well as researchers in academia and industry, this book serves as a vital resource in understanding the complex landscape of modern drug discovery. It emphasizes the synergy between computational methods and experimental validation, shaping the future of pharmaceutical sciences toward more effective and targeted therapies.
This book provides up-to-date information on bioinformatics tools for the discovery and development of new drug molecules. It discusses a range of computational applications, including three-dimensional modeling of protein structures, protein-ligand docking, and molecular dynamics simulation of protein-ligand complexes for identifying desirable drug candidates. It also explores computational approaches for identifying potential drug targets and for pharmacophore modeling. Moreover, it presents structure- and ligand-based drug design tools to optimize known drugs and guide the design of new molecules. The book also describes methods for identifying small-molecule binding pockets in proteins, and summarizes the databases used to explore the essential properties of drugs, drug-like small molecules and their targets. In addition, the book highlights various tools to predict the absorption, distribution, metabolism, excretion (ADME) and toxicity (T) of potential drug candidates. Lastly, it reviews in silico tools that can facilitate vaccine design and discusses their limitations.
Advances in chemistry, biology and genomics coupled with laboratory automation and computational technologies have led to the rapid emergence of the multidisciplinary field of chemical genomics. This edited text, with contributions from experts in the field, discusses the new techniques and applications that help further the study of chemical genomics. The beginning chapters provide an overview of the basic principles of chemical biology and chemical genomics. This is followed by a technical section that describes the sources of small-molecule chemicals; the basics of high-throughput screening technologies; and various bioassays for biochemical-, cellular- and organism-based screens. The final chapters connect the chemical genomics field with personalized medicine and the druggable genome for future discovery of new therapeutics. This book will be valuable to researchers, professionals and graduate students in many fields, including biology, biomedicine and chemistry.
Molecular Docking for Computer-Aided Drug Design: Fundamentals, Techniques, Resources and Applications offers in-depth coverage on the use of molecular docking for drug design. The book is divided into three main sections that cover basic techniques, tools, web servers and applications. It is an essential reference for students and researchers involved in drug design and discovery. - Covers the latest information and state-of-the-art trends in structure-based drug design methodologies - Includes case studies that complement learning - Consolidates fundamental concepts and current practice of molecular docking into one convenient resource
This detailed volume examines computer-aided drug discovery (CADD), a crucial component of modern drug discovery programs that is widely utilized to identity and optimize bioactive compounds for the development of new drugs. With a focus on the methods that are commonly used in the early stage of drug discovery, chapters explore computer simulation, structure prediction, conformational sampling, binding site mapping, docking and scoring, in silico screening, and fragment-based drug design. In addition to the state-of-the-art theoretical concept, this book also includes step-by-step, readily reproducible computational protocols as well as examples of various CADD strategies. The limitations and potential pitfalls of different computational methods are discussed by experts, and tips and advice for their applications are suggested. Practical and thorough, Computer-Aided Drug Discovery serves as an ideal addition to the Methods in Pharmacology and Toxicology series, guiding researchers toward their lab’s goals with this exciting and versatile technology.
THE LATEST BREAKTHROUGHS IN COMPUTER-AIDED DRUG DESIGN AND DELIVERY This definitive text provides in-depth information on computer-assisted techniques for discovering, designing, and optimizing new, effective, and safe drugs. Computer-Aided Drug Design and Delivery Systems offers objective and quantitative data on the use and delivery of drugs in humans. Enabling technologies such as bioinformatics, pharmacokinetics, biosensors, robotics, and bioinstruments are thoroughly discussed in this innovative work. Coverage includes: Computer-aided drug design (CADD) Drug delivery systems Bioinformatics of drug molecules and databases Lipase- and esterase-mediated drugs and drug intermediates Pharmacokinetics and pharmacodynamics of drugs Biomarkers, biosensors, and robotics in medicine Biomedical instrumentation
Helps you choose the right computational tools and techniques to meet your drug design goals Computational Drug Design covers all of the major computational drug design techniques in use today, focusing on the process that pharmaceutical chemists employ to design a new drug molecule. The discussions of which computational tools to use and when and how to use them are all based on typical pharmaceutical industry drug design processes. Following an introduction, the book is divided into three parts: Part One, The Drug Design Process, sets forth a variety of design processes suitable for a number of different drug development scenarios and drug targets. The author demonstrates how computational techniques are typically used during the design process, helping readers choose the best computational tools to meet their goals. Part Two, Computational Tools and Techniques, offers a series of chapters, each one dedicated to a single computational technique. Readers discover the strengths and weaknesses of each technique. Moreover, the book tabulates comparative accuracy studies, giving readers an unbiased comparison of all the available techniques. Part Three, Related Topics, addresses new, emerging, and complementary technologies, including bioinformatics, simulations at the cellular and organ level, synthesis route prediction, proteomics, and prodrug approaches. The book's accompanying CD-ROM, a special feature, offers graphics of the molecular structures and dynamic reactions discussed in the book as well as demos from computational drug design software companies. Computational Drug Design is ideal for both students and professionals in drug design, helping them choose and take full advantage of the best computational tools available. Note: CD-ROM/DVD and other supplementary materials are not included as part of eBook file.
This second edition provides new and updated methods and techniques for identification of drug target, binding sites prediction, high- throughput virtual screening, lead discovery and optimization, conformational sampling, prediction of pharmacokinetic properties using computer-based methodologies. Chapters also focus on the application of the latest artificial intelligence technologies for computer aided drug discovery. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary methods, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols.
Designing and developing new drugs is an expensive and time-consuming process, and there is a need to discover new tools or approaches that can optimize this process. Applied Computer-Aided Drug Design: Models and Methods compiles information about the main advances in computational tools for discovering new drugs in a simple and accessible language for academic students to early career researchers. The book aims to help readers understand how to discover molecules with therapeutic potential by bringing essential information about the subject into one volume. Key Features · Presents the concepts and evolution of classical techniques, up to the use of modern methods based on computational chemistry in accessible format. · Gives a primer on structure- and ligand-based drug design and their predictive capacity to discover new drugs. · Explains theoretical fundamentals and applications of computer-aided drug design. · Focuses on a range of applications of the computations tools, such as molecular docking; molecular dynamics simulations; homology modeling, pharmacophore modeling, quantitative structure-activity relationships (QSAR), density functional theory (DFT), fragment-based drug design (FBDD), and free energy perturbation (FEP). · Includes scientific reference for advanced readers Readership Students, teachers and early career researchers.
Concepts and Experimental Protocols of Modelling and Informatics in Drug Design discusses each experimental protocol utilized in the field of bioinformatics, focusing especially on computer modeling for drug development. It helps the user in understanding the field of computer-aided molecular modeling (CAMM) by presenting solved exercises and examples. The book discusses topics such as fundamentals of molecular modeling, QSAR model generation, protein databases and how to use them to select and analyze protein structure, and pharmacophore modeling for drug targets. Additionally, it discusses data retrieval system, molecular surfaces, and freeware and online servers. The book is a valuable source for graduate students and researchers on bioinformatics, molecular modeling, biotechnology and several members of biomedical field who need to understand more about computer-aided molecular modeling. - Presents exercises with solutions to aid readers in validating their own protocol - Brings a thorough interpretation of results of each exercise to help readers compare them to their own study - Explains each parameter utilized in the algorithms to help readers understand and manipulate various features of molecules and target protein to design their study