Download Free Computational Studies Of Transition Metal Complexes Relevant To Catalytic Alkane Functionalization Book in PDF and EPUB Free Download. You can read online Computational Studies Of Transition Metal Complexes Relevant To Catalytic Alkane Functionalization and write the review.

This book focuses on the electronic properties of transition metals in coordination environments. These properties are responsible for the unique and intricate activity of transition metal sites in bio- and inorganic catalysis, but also pose challenges for both theoretical and experimental studies. Written by an international group of recognized experts, the book reviews recent advances in computational modeling and discusses their interplay using experiments. It covers a broad range of topics, including advanced computational methods for transition metal systems; spectroscopic, electrochemical and catalytic properties of transition metals in coordination environments; metalloenzymes and biomimetic compounds; and spin-related phenomena. As such, the book offers an invaluable resource for all researchers and postgraduate students interested in both fundamental and application-oriented research in the field of transition metal systems.
Presents an up-to-date overview of the rapidly growing field of carbene transformations Carbene transformations have had an enormous impact on catalysis and organometallic chemistry. With the growth of transition metal-catalyzed carbene transformations in recent decades, carbene transformations are today an important compound class in organic synthesis as well as in the pharmaceutical and agrochemical industries. Edited by leading experts in the field, Transition Metal-Catalyzed Carbene Transformations is a thorough summary of the most recent advances in the rapidly expanding research area. This authoritative volume covers different reaction types such as ring forming reactions and rearrangement reactions, details their conditions and properties, and provides readers with accurate information on a wide range of carbene reactions. Twelve in-depth chapters address topics including carbene C-H bond insertion in alkane functionalization, the application of engineered enzymes in asymmetric carbene transfer, progress in transition-metal-catalyzed cross-coupling using carbene precursors, and more. Throughout the text, the authors highlight novel catalytic systems, transformations, and applications of transition-metal-catalyzed carbene transfer. Highlights the dynamic nature of the field of transition-metal-catalyzed carbene transformations Summarizes the catalytic radical approach for selective carbene cyclopropanation, high enantioselectivity in X-H insertions, and bio-inspired carbene transformations Introduces chiral N,N'-dioxide and chiral guanidine-based catalysts and different transformations with gold catalysis Discusses approaches in cycloaddition reactions with metal carbenes and polymerization with carbene transformations Outlines multicomponent reactions through gem-difunctionalization and transition-metal-catalyzed cross-coupling using carbene precursors Transition Metal-Catalyzed Carbene Transformations is essential reading for all chemists involved in organometallics, including organic and inorganic chemists, catalytic chemists, and chemists working in industry.
Pincer-Metal Complexes: Applications in Catalytic Dehydrogenation Chemistry provides an overview of pincer-metal catalytic systems that transform hydrocarbons and their derivatives from an synthetic and mechanistic point-of-view. This book provides thorough coverage of the operating mechanisms and dehydrogenation catalyst compatibility in both functionalized and unfunctionalized hydrocarbon systems. In addition, it includes success stories of pincer-metal systems, as well as current and future challenges. The book is an ideal reference for researchers practicing synthetic organic chemistry, inorganic chemistry, organometallic chemistry and catalysis in academia and industry. In recent years there has been a surge in the research on hydrocarbon dehydrogenation catalytic systems that are compatible with polar substituents. This helps facilitate formulation of tandem processes that are not limited to hydrocarbon transformation but also to hydrocarbon functionalization in a single pot. Covers applications of pincer-metal complexes in organic transformations Includes pincer-group 8 and 9 metal complexes for alkane dehydrogenations Features a discussion of pincer-metal complexes for the dehydrogenation of functionalized hydrocarbons and electro-catalytic transformations
Presents state-of-the-art information concerning the syntheses of valuable functionalized organic compounds from alkanes, with a focus on simple, mild, and green catalytic processes Alkane Functionalization offers a comprehensive review of the state-of-the-art of catalytic functionalization of alkanes under mild and green conditions. Written by a team of leading experts on the topic, the book examines the latest research developments in the synthesis of valuable functionalized organic compounds from alkanes. The authors describe the various modes of interaction of alkanes with metal centres and examine theoxidative alkane functionalization upon C-O bond formation. They address the many types of mechanisms, discuss typical catalytic systems and highlight the strategies inspired by biological catalytic systems. The book also describes alkane functionalization upon C-heteroatom bond formation as well as oxidative and non-oxidative approaches. In addition, the book explores non-transition metal catalysts and metal-free catalytic systems and presents selected types of functionalization of sp3 C-H bonds pertaining to substrates other than alkanes. This important resource: Presents a guide to the most recent advances concerning the syntheses of valuable functionalized organic compounds from alkanes Contains information from leading experts on the topic Offers information on the catalytic functionalization of alkanes that allows for improved simplicity and sustainability compared to current multi-stage industrial processes Explores the challenges inherent with the application of alkanes as starting materials for syntheses of added value functionalized organic compounds Written for academic researchers and industrial scientists working in the fields of coordination chemistry, organometallic chemistry, catalysis, organic synthesis and green chemistry, Alkane Functionalization is an important resource for accessing the most up-to-date information available in the field of catalytic functionalization of alkanes.
Computational methods have become an indispensible tool for elucidating the mechanism of organometallic reactions. This snapshot of state-of-the-art computational studies provides an overview of the vast field of computational organometallic chemistry. Authors from Asia, Europe and the US have been selected to contribute a chapter on their specialist areas. Topics addressed include: DFT studies on zirconium-mediated reactions, force field methods in organometallic chemistry, hydrogenation of π-systems, oxidative functionalization of unactivated C-H bonds and olefins, the osmylation reaction, and cobalt carbonyl clusters. The breadth and depth of the contributions demonstrate not only the crucial role that computational methods play in the study of a wide range of organometallic reactions, but also attest the robust health of the field, which continues to benefit from, as well as inspire novel experimental studies.
Transition metal catalysis belongs to the most important chemical research areas because a ubiquitous number of chemical reactions are catalyzed by transition metal compounds. Many efforts are being made by industry and academia to find new and more efficient catalysts for chemical processes. Transition metals play a prominent role in catalytic research because they have been proven to show an enormous diversity in lowering the activation barrier for chemical reactions. For many years, the search for new catalysts was carried out by trial and error, which was costly and time consuming. The understanding of the mechanism of the catalytic process is often not very advanced because it is difficult to study the elementary steps of the catalysis with experimental techniques. The development of modern quantum chemical methods for calculating possible intermediates and transition states was a breakthrough in gaining an understanding of the reaction pathways of transition metal catalyzed reactions. This volume, organized into eight chapters written by leading scientists in the field, illustrates the progress made during the last decade. The reader will obtain a deep insight into the present state of quantum chemical research in transition metal catalysis.