Download Free Computational Strategy In Catalyst Design Book in PDF and EPUB Free Download. You can read online Computational Strategy In Catalyst Design and write the review.

This book presents a comprehensive review of the methods and approaches being adopted to push forward the boundaries of computational catalysis.
This long-awaited reference source is the first book to focus on this important and hot topic. As such, it provides examples from a wide array of fields where catalyst design has been based on new insights and understanding, presenting such modern and important topics as self-assembly, nature-inspired catalysis, nano-scale architecture of surfaces and theoretical methods. With its inclusion of all the useful and powerful tools for the rational design of catalysts, this is a true "must have" book for every researcher in the field.
The invention of novel and improved catalysts has a valuable impact on human activities and on our planet. Efficient catalysts are expected to be stable, active, and selective. In the past, the development of new catalysts has mainly depended on trial and error, a laborious and time-consuming approach. Nowadays, the mechanistic details of numerous important chemical reactions have been unraveled, and this information is useful for intelligently design novel catalysts. Thus, all the efforts devoted to facilitating a deep understanding of intricate catalytic mechanisms and to the preparation of novel catalysts relying on this are priceless. Chemists must set up adequate strategies, merging experimental and computational knowledge and abilities toward tuning the performance of molecules that might be successful in the lab. The contributions in this book collection are some examples of this modern chemical design.
A comprehensive guide that offers a review of the current technologies that tackle CO2 emissions The race to reduce CO2 emissions continues to be an urgent global challenge. "Engineering Solutions for CO2 Conversion" offers a thorough guide to the most current technologies designed to mitigate CO2 emissions ranging from CO2 capture to CO2 utilization approaches. With contributions from an international panel representing a wide range of expertise, this book contains a multidisciplinary toolkit that covers the myriad aspects of CO2 conversion strategies. Comprehensive in scope, it explores the chemical, physical, engineering and economical facets of CO2 conversion. "Engineering Solutions for CO2 Conversion" explores a broad range of topics including linking CFD and process simulations, membranes technologies for efficient CO2 capture-conversion, biogas sweetening technologies, plasma-assisted conversion of CO2, and much more. This important resource: * Addresses a pressing concern of global environmental damage, caused by the greenhouse gases emissions from fossil fuels * Contains a review of the most current developments on the various aspects of CO2 capture and utilization strategies * Incldues information on chemical, physical, engineering and economical facets of CO2 capture and utilization * Offers in-depth insight into materials design, processing characterization, and computer modeling with respect to CO2 capture and conversion Written for catalytic chemists, electrochemists, process engineers, chemical engineers, chemists in industry, photochemists, environmental chemists, theoretical chemists, environmental officers, "Engineering Solutions for CO2 Conversion" provides the most current and expert information on the many aspects and challenges of CO2 conversion.
Computational Modelling of Nanoparticles highlights recent advances in the power and versatility of computational modelling, experimental techniques, and how new progress has opened the door to a more detailed and comprehensive understanding of the world of nanomaterials. Nanoparticles, having dimensions of 100 nanometers or less, are increasingly being used in applications in medicine, materials and manufacturing, and energy. Spanning the smallest sub-nanometer nanoclusters to nanocrystals with diameters of 10s of nanometers, this book provides a state-of-the-art overview on how computational modelling can provide, often otherwise unobtainable, insights into nanoparticulate structure and properties. This comprehensive, single resource is ideal for researchers who want to start/improve their nanoparticle modelling efforts, learn what can be (and what cannot) achieved with computational modelling, and understand more clearly the value and details of computational modelling efforts in their area of research. - Explores how computational modelling can be successfully applied at the nanoscale level - Includes techniques for the computation modelling of different types of nanoclusters, including nanoalloy clusters, fullerines and Ligated and/or solvated nanoclusters - Offers complete coverage of the use of computational modelling at the nanoscale, from characterization and processing, to applications
Organic Reaction Mechanisms 2017, the 53rd annual volume in this highly successful and unique series, surveys research on organic reaction mechanisms described in the available literature dated 2017. The following classes of organic reaction mechanisms are comprehensively reviewed: • Reaction of Aldehydes and Ketones and their Derivatives • Reactions of Carboxylic, Phosphoric, and Sulfonic Acids and their Derivatives • Oxidation and Reduction • Carbenes and Nitrenes • Nucleophilic Aromatic Substitution • Electrophilic Aromatic Substitution • Carbocations • Nucleophilic Aliphatic Substitution • Carbanions and Electrophilic Aliphatic Substitution • Elimination Reactions • Polar Addition Reactions • Cycloaddition Reactions • Molecular Rearrangements An experienced team of authors compile these reviews every year, so that the reader can rely on a continuing quality of selection and presentation.
Here, the world's most active and productive computational scientists from academia and industry present established, effective and powerful tools for understanding catalysts. With its broad scope -- nitrogen fixation, polymerization, C-H bond activation, oxidations, biocatalysis and much more -- this book represents an extensive knowledge base for designing efficient catalysts, allowing readers to improve the performance of their own catalysts.
This volume represents one of the two edited by inviting a selection of young researchers participating to the European Young Chemist Award 2010. The other volume concerns the area of Nanotechnology/Material Science and is titled: Molecules at Work. This book contains the contributions of selected young chemists from the field of synthetic chemistry. The contributions are grouped under the three following umbrella topics: Synthetic Methods Catalysis Combinatorial and Chemical Biology This volume is an indispensable read for all organic and inorganic chemists, biochemists, chemists working with/on organometallics, and Ph.D. students in chemistry interested in seeing what tomorrow's chemistry will look like.
Helps you choose the right computational tools and techniques to meet your drug design goals Computational Drug Design covers all of the major computational drug design techniques in use today, focusing on the process that pharmaceutical chemists employ to design a new drug molecule. The discussions of which computational tools to use and when and how to use them are all based on typical pharmaceutical industry drug design processes. Following an introduction, the book is divided into three parts: Part One, The Drug Design Process, sets forth a variety of design processes suitable for a number of different drug development scenarios and drug targets. The author demonstrates how computational techniques are typically used during the design process, helping readers choose the best computational tools to meet their goals. Part Two, Computational Tools and Techniques, offers a series of chapters, each one dedicated to a single computational technique. Readers discover the strengths and weaknesses of each technique. Moreover, the book tabulates comparative accuracy studies, giving readers an unbiased comparison of all the available techniques. Part Three, Related Topics, addresses new, emerging, and complementary technologies, including bioinformatics, simulations at the cellular and organ level, synthesis route prediction, proteomics, and prodrug approaches. The book's accompanying CD-ROM, a special feature, offers graphics of the molecular structures and dynamic reactions discussed in the book as well as demos from computational drug design software companies. Computational Drug Design is ideal for both students and professionals in drug design, helping them choose and take full advantage of the best computational tools available. Note: CD-ROM/DVD and other supplementary materials are not included as part of eBook file.