Download Free Computational Spherical Astronomy Book in PDF and EPUB Free Download. You can read online Computational Spherical Astronomy and write the review.

This new revision of a standard work gives a general but comprehensive introduction to positional astronomy. Useful for researchers as well as undergraduates.
This introductory textbook assumes no prior knowledge of classical astronomy but is sufficiently comprehensive to be useful as a background reference work. It provides the essential background on mathematical technique and coordinate systems and discusses in detail, refraction, aberration, stellar parallax, precession, nutation and proper motion.
A step-by-step guide to predicting and calculating the positions of stars, planets, the sun, the moon, and satellites using a personal computer and high school mathematics—for amateur astronomers Our knowledge of the universe is expanding rapidly, as space probes launched decades ago begin to send information back to earth. There has never been a better time to learn about how planets, stars, and satellites move through the heavens. This book is for amateur astronomers who want to move beyond pictures of constellations in star guides and solve the mysteries of a starry night. It is a book for readers who have wondered where Saturn will appear in the night sky, when the sun will rise and set—or how long the space station will be over their location. In Celestial Calculations, J. L. Lawrence shows readers how to find the answers to these and other astronomy questions with only a personal computer and high school math. Using an easy-to-follow step-by-step approach, Lawrence explains what calculations are required, why they are needed, and how they all fit together. Lawrence begins with basic principles: unit of measure conversions, time conversions, and coordinate systems. He combines these concepts into a computer program that can calculate the location of a star and uses the same methods for predicting the locations of the sun, moon, and planets. He then shows how to use these methods for locating the many satellites we have sent into orbit. Finally, he describes a variety of resources and tools available to the amateur astronomer, including star charts and astronomical tables. Diagrams illustrate the major concepts, and computer programs that implement the algorithms are included. Photographs of actual celestial objects accompany the text, and interesting astronomical facts are interspersed throughout. Source code (in Python 3, JAVA, and Visual Basic) and executables for all the programs and examples presented in the book are available for download at https://CelestialCalculations.github.io.
"Spherical trigonometry was at the heart of astronomy and ocean-going navigation for two millennia. The discipline was a mainstay of mathematics education for centuries, and it was a standard subject in high schools until the 1950s. Today, however, it is rarely taught. Heavenly Mathematics traces the rich history of this forgotten art, revealing how the cultures of classical Greece, medieval Islam, and the modern West used spherical trigonometry to chart the heavens and the Earth."--Jacket.
This unique book Spherical Trigonometry is the first and only book with comprehensive and accurate illustration of diagrams of spherical triangles according to given and computed angles that is not found in any similar books in circulation. Part 1, 2, and 3 consist of Definitions.Computations on spherical triangle areas, right, polar, quadrantal, oblique, and spherical triangles. Use of Napier's Rules, Laws of Sines and Cosines, The Six Cases, Delambre's and Gauss' Formulas. Part 4 consists of its application to sea and air navigation, statute and nautical mile, geographical coordinates of cities, computation of distances between cities of countries, time difference between countries, bearing, heading, and course.
From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography
In Hellenistic Astronomy: The Science in Its Contexts, renowned scholars address questions about what the ancient science of the heavens was and the numerous contexts in which it was pursued.
This well-schooled text provides a detailed description of how to perform practical astronomy or spherical astronomy. It is an authoritative source on astronomical phenomena and calendars.