Download Free Computational Social Science In The Age Of Big Data Book in PDF and EPUB Free Download. You can read online Computational Social Science In The Age Of Big Data and write the review.

This edited volume focuses on big data implications for computational social science and humanities from management to usage. The first part of the book covers geographic data, text corpus data, and social media data, and exemplifies their concrete applications in a wide range of fields including anthropology, economics, finance, geography, history, linguistics, political science, psychology, public health, and mass communications. The second part of the book provides a panoramic view of the development of big data in the fields of computational social sciences and humanities. The following questions are addressed: why is there a need for novel data governance for this new type of data?, why is big data important for social scientists?, and how will it revolutionize the way social scientists conduct research? With the advent of the information age and technologies such as Web 2.0, ubiquitous computing, wearable devices, and the Internet of Things, digital society has fundamentally changed what we now know as "data", the very use of this data, and what we now call "knowledge". Big data has become the standard in social sciences, and has made these sciences more computational. Big Data in Computational Social Science and Humanities will appeal to graduate students and researchers working in the many subfields of the social sciences and humanities.
Der Sammelband Computational Social Science in the Age of Big Data beschäftigt sich mit Konzepten, Methoden, Tools und Anwendungen (automatisierter) datengetriebener Forschung mit sozialwissenschaftlichem Hintergrund. Der Fokus des Bandes liegt auf der Etablierung der Computational Social Science (CSS) als aufkommendes Forschungs- und Anwendungsfeld. Es werden Beiträge international namhafter Autoren präsentiert, die forschungs- und praxisrelevante Themen dieses Bereiches besprechen. Die Herausgeber forcieren dabei einen interdisziplinären Zugang zum Feld, der sowohl Online-Forschern aus der Wissenschaft wie auch aus der angewandten Marktforschung einen Einstieg bietet.
This essential guide to doing social research in this fast-evolving digital age explains how the digital revolution is transforming the way social scientists observe behavior, ask questions, run experiments, and engage in mass collaborations.
Quantitative research in social science research is changing rapidly. Researchers have vast and complex arrays of data with which to work: we have incredible tools to sift through the data and recognize patterns in that data; there are now many sophisticated models that we can use to make sense of those patterns; and we have extremely powerful computational systems that help us accomplish these tasks quickly. This book focuses on some of the extraordinary work being conducted in computational social science - in academia, government, and the private sector - while highlighting current trends, challenges, and new directions. Thus, Computational Social Science showcases the innovative methodological tools being developed and applied by leading researchers in this new field. The book shows how academics and the private sector are using many of these tools to solve problems in social science and public policy.
This volume includes 15 papers from the National Academy of Engineering's 2006 U.S. Frontiers of Engineering (USFOE) Symposium held in September 2006. USFOE meetings bring together 100 outstanding engineers (ages 30 to 45) to exchange information about leading-edge technologies in a range of engineering fields. The 2006 symposium covered four topic areas: intelligent software systems and machines, the nano/bio interface, engineering personal mobility for the 21st century, and supply chain management. A paper by dinner speaker Dr. W. Dale Compton, Lillian M. Gilbreth Distinguished Professor of Industrial Engineering, Emeritus, is also included. The papers describe leading-edge research on commercializing auditory neuroscience, future developments in bionanotechnology, sustainable urban transportation, and managing disruptions to supply chains, among other topics. Appendixes include information about contributors, the symposium program, and a list of meeting participants. This is the twelfth volume in the USFOE series.
Both Traditional Students and Working Professionals Acquire the Skills to Analyze Social Problems. Big Data and Social Science: A Practical Guide to Methods and Tools shows how to apply data science to real-world problems in both research and the practice. The book provides practical guidance on combining methods and tools from computer science, statistics, and social science. This concrete approach is illustrated throughout using an important national problem, the quantitative study of innovation. The text draws on the expertise of prominent leaders in statistics, the social sciences, data science, and computer science to teach students how to use modern social science research principles as well as the best analytical and computational tools. It uses a real-world challenge to introduce how these tools are used to identify and capture appropriate data, apply data science models and tools to that data, and recognize and respond to data errors and limitations. For more information, including sample chapters and news, please visit the author's website.
The Handbook of Computational Social Science is a comprehensive reference source for scholars across multiple disciplines. It outlines key debates in the field, showcasing novel statistical modeling and machine learning methods, and draws from specific case studies to demonstrate the opportunities and challenges in CSS approaches. The Handbook is divided into two volumes written by outstanding, internationally renowned scholars in the field. This second volume focuses on foundations and advances in data science, statistical modeling, and machine learning. It covers a range of key issues, including the management of big data in terms of record linkage, streaming, and missing data. Machine learning, agent-based and statistical modeling, as well as data quality in relation to digital trace and textual data, as well as probability, non-probability, and crowdsourced samples represent further foci. The volume not only makes major contributions to the consolidation of this growing research field, but also encourages growth into new directions. With its broad coverage of perspectives (theoretical, methodological, computational), international scope, and interdisciplinary approach, this important resource is integral reading for advanced undergraduates, postgraduates, and researchers engaging with computational methods across the social sciences, as well as those within the scientific and engineering sectors.
We are living in a digital era in which most of our daily activities take place online. This has created a big data phenomenon that has been subject to scientific research with increasingly available tools and processing power. As a result, a growing number of social science scholars are using computational methods for analyzing social behavior. To further the area, these evolving methods must be made known to sociological research scholars. Opportunities and Challenges for Computational Social Science Methods focuses on the implementation of social science methods and the opportunities and challenges of these methods. This book sheds light on the infrastructure that should be built to gain required skillsets, the tools used in computational social sciences, and the methods developed and applied into computational social sciences. Covering topics like computational communication, ecological cognition, and natural language processing, this book is an essential resource for researchers, data scientists, scholars, students, professors, sociologists, and academicians.
Computational Methods for Communication Science showcases the use of innovative computational methods in the study of communication. This book discusses the validity of using big data in communication science and showcases a number of new methods and applications in the fields of text and network analysis. Computational methods have the potential to greatly enhance the scientific study of communication because they allow us to move towards collaborative large-N studies of actual behavior in its social context. This requires us to develop new skills and infrastructure and meet the challenges of open, valid, reliable, and ethical "big data" research. This volume brings together a number of leading scholars in this emerging field, contributing to the increasing development and adaptation of computational methods in communication science. The chapters in this book were originally published as a special issue of the journal Communication Methods and Measures.
This open access handbook describes foundational issues, methodological approaches and examples on how to analyse and model data using Computational Social Science (CSS) for policy support. Up to now, CSS studies have mostly developed on a small, proof-of concept, scale that prevented from unleashing its potential to provide systematic impact to the policy cycle, as well as from improving the understanding of societal problems to the definition, assessment, evaluation, and monitoring of policies. The aim of this handbook is to fill this gap by exploring ways to analyse and model data for policy support, and to advocate the adoption of CSS solutions for policy by raising awareness of existing implementations of CSS in policy-relevant fields. To this end, the book explores applications of computational methods and approaches like big data, machine learning, statistical learning, sentiment analysis, text mining, systems modelling, and network analysis to different problems in the social sciences. The book is structured into three Parts: the first chapters on foundational issues open with an exposition and description of key policymaking areas where CSS can provide insights and information. In detail, the chapters cover public policy, governance, data justice and other ethical issues. Part two consists of chapters on methodological aspects dealing with issues such as the modelling of complexity, natural language processing, validity and lack of data, and innovation in official statistics. Finally, Part three describes the application of computational methods, challenges and opportunities in various social science areas, including economics, sociology, demography, migration, climate change, epidemiology, geography, and disaster management. The target audience of the book spans from the scientific community engaged in CSS research to policymakers interested in evidence-informed policy interventions, but also includes private companies holding data that can be used to study social sciences and are interested in achieving a policy impact.