Download Free Computational Ship Design Book in PDF and EPUB Free Download. You can read online Computational Ship Design and write the review.

This book offers an introduction to the fundamental principles and systematic methodologies employed in computational approaches to ship design. It takes a detailed approach to the description of the problem definition, related theories, mathematical formulation, algorithm selection, and other core design information. Over eight chapters and appendices the book covers the complete process of ship design, from a detailed description of design theories through to cutting-edge applications. Following an introduction to relevant terminology, the first chapters consider ship design equations and models, freeboard calculations, resistance prediction and power estimation. Subsequent chapters cover topics including propeller deign, engine selection, hull form design, structural design and outfitting. The book concludes with two chapters considering operating design and economic factors including construction costs and fuel consumption. The book reflects first-hand experiences in ship design and R&D activities, and incorporates improvements based on feedback received from many industry experts. Examples provided are based on genuine case studies in the field. The comprehensive description of each design stage presented in this book offers guidelines for academics, researchers, students, and industrial manufactures from diverse fields, including ocean engineering and mechanical engineering. From a commercial point of view the book will be of great value to those involved in designing a new vessel or improving an existing ship.
This book offers an advanced course on ?Computational Geometry for Ships?. It takes into account the recent rapid progress in this field by adapting modern computational methodology to ship geometric applications. Preliminary curve and surface techniques are included to educate engineers in the use of mathematical methods to assist in CAD and other design areas. In addition, there is a comprehensive study of interpolation and approximation techniques, which is reinforced by direct application to ship curve design, ship curve fairing techniques and other related disciplines. The design, evaluation and production of ship surface geometries are further demonstrated by including current and evolving CAD modelling systems.
Practical Ship Hydrodynamics provides a comprehensive overview of hydrodynamic experimental and numerical methods for ship resistance and propulsion, maneuvering, seakeeping and vibration. Beginning with an overview of problems and approaches, including the basics of modeling and full scale testing, expert author Volker Bertram introduces the marine applications of computational fluid dynamics and boundary element methods. Expanded and updated, this new edition includes: Otherwise disparate information on the factors affecting ship hydrodynamics, combined to provide one practical, go-to resource. Full coverage of new developments in computational methods and model testing techniques relating to marine design and development. New chapters on hydrodynamic aspects of ship vibrations and hydrodynamic options for fuel efficiency, and increased coverage of simple design estimates of hydrodynamic quantities such as resistance and wake fraction. With a strong focus on essential background for real-life modeling, this book is an ideal reference for practicing naval architects and graduate students.
Ship optimization design is critical to the preliminary design of a ship. With the rapid development of computer technology, the simulation-based design (SBD) technique has been introduced into the field of ship design. Typical SBD consists of three parts: geometric reconstruction; CFD numerical simulation; and optimization. In the context of ship design, these are used to alter the shape of the ship, evaluate the objective function and to assess the hull form space respectively. As such, the SBD technique opens up new opportunities and paves the way for a new method for optimal ship design. This book discusses the problem of optimizing ship’s hulls, highlighting the key technologies of ship optimization design and presenting a series of hull-form optimization platforms. It includes several improved approaches and novel ideas with significant potential in this field
Engineering mathematics is a branch of applied mathematics where mathematical methods and techniques are implemented for solving problems related to the engineering and industry. It also represents a multidisciplinary approach where theoretical and practical aspects are deeply merged with the aim at obtaining optimized solutions. In line with that, the present Special Issue, 'Engineering Mathematics in Ship Design', is focused, in particular, with the use of this sort of engineering science in the design of ships and vessels. Articles are welcome when applied science or computation science in ship design represent the core of the discussion.
The previous edition of Ship Design for Efficiency and Economy was published as a Butterworth's marine engineering title. It has now been completely revised and updated by Schneekluth and Bertram.This book gives advice to students and naval architects on how to design ships - in particular with regard to hull design. The previous edition of this book was published in 1987. Since then, there have been numerous important developments in this area and the new additions to this book reflect these changes. Chapter 3 has been completely rewritten with added information on methodology of optimization, optimization shells and concept exploration methods. There is also a new sub-chapter on Computational Fluid Dynamics (CFD) for ship-hull design. Plus, a new method to predict ship resistance based on the evaluation of modern ship hull design will be detailed.The emphasis of the this book is on design for operational economy. The material is directly usable not only in practice, in the design office and by shipowners, but also by students at both undergraduate and postgraduate levels.
The second in the Studies in the Design Laboratory epub series produced by the Harvard University Graduate School of Design and the CCA, this publication traces the development of complex computational geometry in the work of Ron Resch. Resch’s strikingly novel generative methods laid the seeds of computational origami, and during the early 1970’s he collaborated in the pioneering computer science department of the University of Utah, a hotbed of early computer graphics. Featuring interviews with Resch’s collaborators, excerpts from his remarkable films, and a consideration of the role of the architect in cross-disciplinary laboratories, this epub argues for Resch as one of the first true computational designers.
Data, Matter, Design presents a comprehensive overview of current design processes that rely on the input of data and use of computational design strategies, and their relationship to an array of outputs. Technological changes, through the use of computational tools and processes, have radically altered and influenced our relationship to cities and the methods by which we design architecture, urban, and landscape systems. This book presents a wide range of curated projects and contributed texts by leading architects, urbanists, and designers that transform data as an abstraction, into spatial, experiential, and performative configurations within urban ecologies, emerging materials, robotic agents, adaptive fields, and virtual constructs. Richly illustrated with over 200 images, Data, Matter, Design is an essential read for students, academics, and professionals to evaluate and discuss how data in design methodologies and theoretical discourses have evolved in the last two decades and why processes of data collection, measurement, quantification, simulation, algorithmic control, and their integration into methods of reading and producing spatial conditions, are becoming vital in academic and industry practices.
State-of-the-art coverage of modern computational methods for the analysis and design of beams Analysis and Design of Elastic Beams presents computer models and applications related to thin-walled beams such as those used in mechanical and aerospace designs, where thin, lightweight structures with high strength are needed. This book will enable readers to compute the cross-sectional properties of individual beams with arbitrary cross-sectional shapes, to apply a general-purpose computer analysis of a complete structure to determine the forces and moments in the individual members, and to use a unified approach for calculating the normal and shear stresses, as well as deflections, for those members' cross sections. In addition, this book augments a solid foundation in the basic structural design theory of beams by: * Providing coverage of thin-wall structure analysis and optimization techniques * Applying computer numerical methods to classical design methods * Developing computational solutions for cross-sectional properties and stresses using finite element analyses Including access to an associated Web site with software for the analysis and design of any cross-sectional shape, Analysis and Design of Elastic Beams: Computational Methods is an essential reference for mechanical, aerospace, and civil engineers and designers working in the automotive, ship, and aerospace industries in product and process design, machine design, structural design, and design optimization, as well as students and researchers in these areas.
This book deals with ship design and in particular with methodologies of the preliminary design of ships. The book is complemented by a basic bibliography and five appendices with useful updated charts for the selection of the main dimensions and other basic characteristics of different types of ships (Appendix A), the determination of hull form from the data of systematic hull form series (Appendix B), the detailed description of the relational method for the preliminary estimation of ship weights (Appendix C), a brief review of the historical evolution of shipbuilding science and technology from the prehistoric era to date (Appendix D) and finally a historical review of regulatory developments of ship's damage stability to date (Appendix E). The book can be used as textbook for ship design courses or as additional reading for university or college students of naval architecture courses and related disciplines; it may also serve as a reference book for naval architects, practicing engineers of related disciplines and ship officers, who like to enter the ship design field systematically or to use practical methodologies for the estimation of ship's main dimensions and of other ship main properties and elements of ship design.