Download Free Computational Semantics Book in PDF and EPUB Free Download. You can read online Computational Semantics and write the review.

Computational semantics is the art and science of computing meaning in natural language. The meaning of a sentence is derived from the meanings of the individual words in it, and this process can be made so precise that it can be implemented on a computer. Designed for students of linguistics, computer science, logic and philosophy, this comprehensive text shows how to compute meaning using the functional programming language Haskell. It deals with both denotational meaning (where meaning comes from knowing the conditions of truth in situations), and operational meaning (where meaning is an instruction for performing cognitive action). Including a discussion of recent developments in logic, it will be invaluable to linguistics students wanting to apply logic to their studies, logic students wishing to learn how their subject can be applied to linguistics, and functional programmers interested in natural language processing as a new application area.
How can computers distinguish the coherent from the unintelligible, recognize new information in a sentence, or draw inferences from a natural language passage? Computational semantics is an exciting new field that seeks answers to these questions, and this volume is the first textbook wholly devoted to this growing subdiscipline. The book explains the underlying theoretical issues and fundamental techniques for computing semantic representations for fragments of natural language. This volume will be an essential text for computer scientists, linguists, and anyone interested in the development of computational semantics.
Lexical semantics has become a major research area within computational linguistics, drawing from psycholinguistics, knowledge representation, and computer algorithms and architecture. Research programs whose goal is the definition of large lexicons are asking what the appropriate representation structure is for different facets of lexical information. Among these facets, semantic information is probably the most complex and the least explored. Computational Lexical Semantics is one of the first volumes to provide models for the creation of various kinds of computerized lexicons for the automatic treatment of natural language, with applications to machine translation, automatic indexing, and database front-ends, knowledge extraction, among other things. It focuses on semantic issues, as seen by linguists, psychologists, and computer scientists. Besides describing academic research, it also covers ongoing industrial projects.
This book analyzes the application of computer science and artificial intelligence (AI) techniques in the semantics’ analysis for linguistics, classical studies, and philosophy. Similar techniques can be implemented to incorporate the fields of education, psychology, humanities, law, maritime, data science and business intelligence. The book is suitable for the broader audience interested in the emerging scientific field of formal and Natural Language Processing (NLP). The significance of incorporating all aspects of logic design right at the beginning of the creation of a new NLP system is emphasized and analyzed throughout the book. NLP and AI systems offer an unprecedented set of virtues to society. However, the principles of ethical logic design and operation of primitive to deep learning NLP products must be considered in the future, even via the preparation of legislation if needed. As law applications are already taking advantage of the techniques mentioned, the manufacturers should apply the laws and the possible knowledge development of the NLP products could even be monitored after sales. This will minimize the drawbacks of implementing such intelligent technological solutions. NLP systems are a digital representation of ourselves and may even interact with each other in the future. Learning from them is also a way to improve ourselves.
Semantic fields are lexically coherent – the words they contain co-occur in texts. In this book the authors introduce and define semantic domains, a computational model for lexical semantics inspired by the theory of semantic fields. Semantic domains allow us to exploit domain features for texts, terms and concepts, and they can significantly boost the performance of natural-language processing systems. Semantic domains can be derived from existing lexical resources or can be acquired from corpora in an unsupervised manner. They also have the property of interlinguality, and they can be used to relate terms in different languages in multilingual application scenarios. The authors give a comprehensive explanation of the computational model, with detailed chapters on semantic domains, domain models, and applications of the technique in text categorization, word sense disambiguation, and cross-language text categorization. This book is suitable for researchers and graduate students in computational linguistics.
Semantic change — how the meanings of words change over time — has preoccupied scholars since well before modern linguistics emerged in the late 19th and early 20th century, ushering in a new methodological turn in the study of language change. Compared to changes in sound and grammar, semantic change is the least understood. Ever since, the study of semantic change has progressed steadily, accumulating a vast store of knowledge for over a century, encompassing many languages and language families. Historical linguists also early on realized the potential of computers as research tools, with papers at the very first international conferences in computational linguistics in the 1960s. Such computational studies still tended to be small-scale, method-oriented, and qualitative. However, recent years have witnessed a sea-change in this regard. Big-data empirical quantitative investigations are now coming to the forefront, enabled by enormous advances in storage capability and processing power. Diachronic corpora have grown beyond imagination, defying exploration by traditional manual qualitative methods, and language technology has become increasingly data-driven and semantics-oriented. These developments present a golden opportunity for the empirical study of semantic change over both long and short time spans. A major challenge presently is to integrate the hard-earned knowledge and expertise of traditional historical linguistics with cutting-edge methodology explored primarily in computational linguistics. The idea for the present volume came out of a concrete response to this challenge. The 1st International Workshop on Computational Approaches to Historical Language Change (LChange'19), at ACL 2019, brought together scholars from both fields. This volume offers a survey of this exciting new direction in the study of semantic change, a discussion of the many remaining challenges that we face in pursuing it, and considerably updated and extended versions of a selection of the contributions to the LChange'19 workshop, addressing both more theoretical problems — e.g., discovery of "laws of semantic change" — and practical applications, such as information retrieval in longitudinal text archives.
The aim of this volume is to present modern developments in semantics and logics of computation in a way that is accessible to graduate students. The book is based on a summer school at the Isaac Newton Institute and consists of a sequence of linked lecture course by international authorities in the area. The whole set have been edited to form a coherent introduction to these topics, most of which have not been presented pedagogically before.
This book is a collection of papers written by outstanding researchers in the newly emerging field of computational semantics. It is aimed at those linguists, computer scientists, and logicians who want to know more about the algorithmic realization of meaning in natural language and about what is happening in this field of research. It includes a general introduction by the editors.
This book provides a systematic study of three foundational issues in the semantics of natural language that have been relatively neglected in the past few decades. focuses on the formal characterization of intensions, the nature of an adequate type system for natural language semantics, and the formal power of the semantic representation language proposes a theory that offers a promising framework for developing a computational semantic system sufficiently expressive to capture the properties of natural language meaning while remaining computationally tractable written by two leading researchers and of interest to students and researchers in formal semantics, computational linguistics, logic, artificial intelligence, and the philosophy of language
Explores quantum computation from the perspective of the branch of theoretical computer science known as semantics.