Download Free Computational Problems Methods And Results In Algebraic Number Theory Book in PDF and EPUB Free Download. You can read online Computational Problems Methods And Results In Algebraic Number Theory and write the review.

A description of 148 algorithms fundamental to number-theoretic computations, in particular for computations related to algebraic number theory, elliptic curves, primality testing and factoring. The first seven chapters guide readers to the heart of current research in computational algebraic number theory, including recent algorithms for computing class groups and units, as well as elliptic curve computations, while the last three chapters survey factoring and primality testing methods, including a detailed description of the number field sieve algorithm. The whole is rounded off with a description of available computer packages and some useful tables, backed by numerous exercises. Written by an authority in the field, and one with great practical and teaching experience, this is certain to become the standard and indispensable reference on the subject.
News about this title: — Author Marty Weissman has been awarded a Guggenheim Fellowship for 2020. (Learn more here.) — Selected as a 2018 CHOICE Outstanding Academic Title — 2018 PROSE Awards Honorable Mention An Illustrated Theory of Numbers gives a comprehensive introduction to number theory, with complete proofs, worked examples, and exercises. Its exposition reflects the most recent scholarship in mathematics and its history. Almost 500 sharp illustrations accompany elegant proofs, from prime decomposition through quadratic reciprocity. Geometric and dynamical arguments provide new insights, and allow for a rigorous approach with less algebraic manipulation. The final chapters contain an extended treatment of binary quadratic forms, using Conway's topograph to solve quadratic Diophantine equations (e.g., Pell's equation) and to study reduction and the finiteness of class numbers. Data visualizations introduce the reader to open questions and cutting-edge results in analytic number theory such as the Riemann hypothesis, boundedness of prime gaps, and the class number 1 problem. Accompanying each chapter, historical notes curate primary sources and secondary scholarship to trace the development of number theory within and outside the Western tradition. Requiring only high school algebra and geometry, this text is recommended for a first course in elementary number theory. It is also suitable for mathematicians seeking a fresh perspective on an ancient subject.
Written by an authority with great practical and teaching experience in the field, this book addresses a number of topics in computational number theory. Chapters one through five form a homogenous subject matter suitable for a six-month or year-long course in computational number theory. The subsequent chapters deal with more miscellaneous subjects.
Broad graduate-level account of Algebraic Number Theory, first published in 2001, including exercises, by a world-renowned author.
this gap. In sixteen survey articles the most important theoretical results, algorithms and software methods of computer algebra are covered, together with systematic references to literature. In addition, some new results are presented. Thus the volume should be a valuable source for obtaining a first impression of computer algebra, as well as for preparing a computer algebra course or for complementary reading. The preparation of some papers contained in this volume has been supported by grants from the Austrian "Fonds zur Forderung der wissenschaftlichen For schung" (Project No. 3877), the Austrian Ministry of Science and Research (Department 12, Dr. S. Hollinger), the United States National Science Foundation (Grant MCS-8009357) and the Deutsche Forschungsgemeinschaft (Lo-23 1-2). The work on the volume was greatly facilitated by the opportunity for the editors to stay as visitors at the Department of Computer and Information Sciences, University of Delaware, at the General Electric Company Research and Development Center, Schenectady, N. Y. , and at the Mathematical Sciences Department, Rensselaer Polytechnic Institute, Troy, N. Y. , respectively. Our thanks go to all these institutions. The patient and experienced guidance and collaboration of the Springer-Verlag Wien during all the stages of production are warmly appreciated. The editors of the Cooperative editor of Supplementum Computing B. Buchberger R. Albrecht G. Collins R. Loos Contents Loos, R. : Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . 1 Buchberger, B. , Loos, R. : Algebraic Simplification . . . . . . . . . . 11 Neubiiser, J. : Computing with Groups and Their Character Tables. 45 Norman, A. C. : Integration in Finite Terms. . . . . . . . . . . . . .
This ACM volume deals with tackling problems that can be represented by data structures which are essentially matrices with polynomial entries, mediated by the disciplines of commutative algebra and algebraic geometry. The discoveries stem from an interdisciplinary branch of research which has been growing steadily over the past decade. The author covers a wide range, from showing how to obtain deep heuristics in a computation of a ring, a module or a morphism, to developing means of solving nonlinear systems of equations - highlighting the use of advanced techniques to bring down the cost of computation. Although intended for advanced students and researchers with interests both in algebra and computation, many parts may be read by anyone with a basic abstract algebra course.
This monograph makes available, in English, the elementary parts of classical algebraic number theory. This second edition follows closely the plan and style of the first edition. The principal changes are the correction of misprints, the expansion or simplification of some arguments, and the omission of the final chapter on units in order to make way for the introduction of some two hundred problems.
. . . if one wants to make progress in mathematics one should study the masters not the pupils. N. H. Abel Heeke was certainly one of the masters, and in fact, the study of Heeke L series and Heeke operators has permanently embedded his name in the fabric of number theory. It is a rare occurrence when a master writes a basic book, and Heeke's Lectures on the Theory of Algebraic Numbers has become a classic. To quote another master, Andre Weil: "To improve upon Heeke, in a treatment along classical lines of the theory of algebraic numbers, would be a futile and impossible task. " We have tried to remain as close as possible to the original text in pre serving Heeke's rich, informal style of exposition. In a very few instances we have substituted modern terminology for Heeke's, e. g. , "torsion free group" for "pure group. " One problem for a student is the lack of exercises in the book. However, given the large number of texts available in algebraic number theory, this is not a serious drawback. In particular we recommend Number Fields by D. A. Marcus (Springer-Verlag) as a particularly rich source. We would like to thank James M. Vaughn Jr. and the Vaughn Foundation Fund for their encouragement and generous support of Jay R. Goldman without which this translation would never have appeared. Minneapolis George U. Brauer July 1981 Jay R.