Download Free Computational Photocatalysis Book in PDF and EPUB Free Download. You can read online Computational Photocatalysis and write the review.

Discover the latest research in photocatalysis combined with foundational topics in basic physical and chemical photocatalytic processes In Heterogeneous Photocatalysis: From Fundamentals to Applications in Energy Conversion and Depollution, distinguished researcher and editor Jennifer Strunk delivers a rigorous discussion of the two main topics in her field—energy conversion and depollution reactions. The book covers topics like water splitting, CO2 reduction, NOx abatement and harmful organics degradation. In addition to the latest research on these topics, the reference provides readers with fundamental information about elementary physical and chemical processes in photocatalysis that are extremely practical in this interdisciplinary field. It offers an excellent overview of modern heterogeneous photocatalysis and combines concepts from different viewpoints to allow researchers with backgrounds as varied as electrochemistry, material science, and semiconductor physics to begin developing solutions with photocatalysis. In addition to subjects like metal-free photocatalysts and photocarrier loss pathways in metal oxide absorber materials for photocatalysis explored with time-resolved spectroscopy, readers will also benefit from the inclusion of: Thorough introductions to kinetic and thermodynamic considerations for photocatalyst design and the logic, concepts, and methods of the design of reliable studies on photocatalysis Detailed explorations of in-situ spectroscopy for mechanistic studies in semiconductor photocatalysis and the principles and limitations of photoelectrochemical fuel generation Discussions of photocatalysis, including the heterogeneous catalysis perspective and insights into photocatalysis from computational chemistry Treatments of selected aspects of photoreactor engineering and defects in photocatalysis Perfect for photochemists, physical and catalytic chemists, electrochemists, and materials scientists, Heterogeneous Photocatalysis will also earn a place in the libraries of surface physicists and environmental chemists seeking up-to-date information about energy conversion and depollution reactions.
The book includes a historical introduction to organometallic chemistry, a survey of mechanisms, and an extensive introduction to quantum mechanical computational methods.
A comprehensive and timely overview of this important and hot topic, with special emphasis placed on environmental applications and the potential for solar light harvesting. Following introductory chapters on environmental photocatalysis, water splitting, and applications in synthetic chemistry, further chapters focus on the synthesis and design of photocatalysts, solar energy conversion, and such environmental aspects as the removal of water pollutants, photocatalytic conversion of CO2. Besides metal oxide-based photocatalysts, the authors cover other relevant material classes including carbon-based nanomaterials and novel hybrid materials. Chapters on mechanistic aspects, computational modeling of photocatalysis and Challenges and perspectives of solar reactor design for industrial applications complete this unique survey of the subject. With its in-depth discussions ranging from a comprehensive understanding to the engineering of materials and applied devices, this is an invaluable resource for a range of disciplines.
Theoretical and Computational Photochemistry: Fundamentals, Methods, Applications and Synergy with Experimental Approaches provides a comprehensive overview of photoactive systems and photochemical processes. After an introduction to photochemistry, the book discusses the key computational chemistry methods applied to the study of light-induced processes over the past decade, and further outlines recent research topics to which these methods have been applied. By discussing the synergy between experimental and computational data, the book highlights how theoretical studies could facilitate understanding experimental findings. This helpful guide is for both theoretical chemists and experimental photochemistry researchers interested in utilizing computational photochemistry methods for their own work. - Reviews the fundamentals of photochemistry, helping those new to the field in understanding key concepts - Provides detailed guidance and comparison of computational and theoretical methods, highlighting the suitability of each method for different case studies - Outlines current applications to encourage discussion of the synergy between experimental and computational data, and inspiring further application of these methods to other photochemical processes
Green chemistry already draws on many techniques and approaches developed by theoretical chemists, whilst simultaneously revealing a whole range of interesting new challenges for theoretical chemists to explore. Highlighting how work at the intersection of these fields has already produced beneficial results, Green Chemistry and Computational Chemistry: Shared Lessons in Sustainability is a practical, informative guide to combining green and theoretical chemistry principles and approaches in the development of more sustainable practices.Beginning with an introduction to both theoretical chemistry and green chemistry, the book goes on to explore current approaches being taken by theoretical chemists to address green and sustainable chemistry issues, before moving on to highlight ways in which green chemists are employing the knowledge and techniques of theoretical chemistry to help in developing greener processes. The future possibilities for theoretical chemistry in addressing sustainability issues are discussed, before a selection of case studies provides good insight into how these interactions and approaches have been successfully used in practice. - Highlights the benefits of green and theoretical chemistry groups working together to tackle sustainability issues across both academia and industry - Supports readers in easily selecting the most appropriate path through the book for their own needs - Presents a range of examples examining the practical implications and outcomes of interdisciplinary approaches
Discover the latest research in photocatalysis combined with foundational topics in basic physical and chemical photocatalytic processes In Heterogeneous Photocatalysis: From Fundamentals to Applications in Energy Conversion and Depollution, distinguished researcher and editor Jennifer Strunk delivers a rigorous discussion of the two main topics in her field—energy conversion and depollution reactions. The book covers topics like water splitting, CO2 reduction, NOx abatement and harmful organics degradation. In addition to the latest research on these topics, the reference provides readers with fundamental information about elementary physical and chemical processes in photocatalysis that are extremely practical in this interdisciplinary field. It offers an excellent overview of modern heterogeneous photocatalysis and combines concepts from different viewpoints to allow researchers with backgrounds as varied as electrochemistry, material science, and semiconductor physics to begin developing solutions with photocatalysis. In addition to subjects like metal-free photocatalysts and photocarrier loss pathways in metal oxide absorber materials for photocatalysis explored with time-resolved spectroscopy, readers will also benefit from the inclusion of: Thorough introductions to kinetic and thermodynamic considerations for photocatalyst design and the logic, concepts, and methods of the design of reliable studies on photocatalysis Detailed explorations of in-situ spectroscopy for mechanistic studies in semiconductor photocatalysis and the principles and limitations of photoelectrochemical fuel generation Discussions of photocatalysis, including the heterogeneous catalysis perspective and insights into photocatalysis from computational chemistry Treatments of selected aspects of photoreactor engineering and defects in photocatalysis Perfect for photochemists, physical and catalytic chemists, electrochemists, and materials scientists, Heterogeneous Photocatalysis will also earn a place in the libraries of surface physicists and environmental chemists seeking up-to-date information about energy conversion and depollution reactions.
Photocatalytic materials can improve the efficiency and sustainability of processes and offer novel ways to address issues across a wide range of fields—from sustainable chemistry and energy production to environmental remediation. Current Developments in Photocatalysis and Photocatalytic Materials provides an overview of the latest advances in this field, offering insight into the chemistry and activity of the latest generation of photocatalytic materials.After an introduction to photocatalysis and photocatalytic materials, this book goes on to outline a wide selection of photocatalytic materials, not only covering typical metal oxide photocatalysts such as TiO2 but also exploring newly developed organic semiconducting photocatalysts, such as g-C3N4.Drawing on the experience of an expert team of contributors, Current Developments in Photocatalysis and Photocatalytic Materials highlights the new horizons of photocatalysis, in which photocatalytic materials will come to play an important role in our day-to-day lives. - Reviews developments in both organic- and inorganic-based materials for use in photocatalysis - Presents the fundamental chemistry and activity of a broad range of key photocatalytic materials, including both typical and novel materials - Highlights the role photocatalytic materials can play in sustainable applications
Two-dimensional (2D) materials for photocatalytic applications have attracted attention in recent years due to their unique thickness-dependent physiochemical properties. 2D materials offer enhanced functionality over traditional three-dimensional (3D) photocatalysts due to modified chemical composition and electronic structures, as well as abundant surface active sites. This book reviews the applications of 2D-related nano-materials in solar-driven catalysis, providing an up-to-date introduction to the design and use of 2D-related photo(electro)catalysts. This includes not only application areas such as fine chemicals synthesis, water splitting, CO2 reduction, and N2 fixation, but also catalyst design and preparation. Some typical 2D and 2D-related materials (such as layered double hydroxides (LDHs), layered metal oxides, transition metal dichalcogenide (TMDs), metal–organic frameworks (MOFs), graphene, g-C3N4, etc.) are classified, and relationships between structure and property are demonstrated, with emphasis on how to improve 2D-related materials performance for practical applications. While the focus of this book will primarily be on experimental studies, computational results will serve as a necessary reference. With chapters written by expert researchers in their fields, Photocatalysis Using 2D Nanomaterials will provide advanced undergraduates, postgraduates and other researchers convenient introductions to these topics.
The two-volume set LNAI 7629 and LNAI 7630 constitutes the refereed proceedings of the 11th Mexican International Conference on Artificial Intelligence, MICAI 2012, held in San Luis Potosí, Mexico, in October/November 2012. The 80 revised papers presented were carefully reviewed and selected from 224 submissions. The second volume includes 40 papers focusing on soft computing. The papers are organized in the following topical sections: natural language processing; evolutionary and nature-inspired metaheuristic algorithms; neural networks and hybrid intelligent systems; fuzzy systems and probabilistic models in decision making.