Download Free Computational Neuroscience For Perceptual Quality Assessment Book in PDF and EPUB Free Download. You can read online Computational Neuroscience For Perceptual Quality Assessment and write the review.

This LNCS volume constitutes the proceedings of 12th International Conference, GALA 2023, in Dublin, Ireland, held during November/December 2023. The 36 full papers and 13 short papers were carefully reviewed and selected from 88 submissions. The papers contained in this book have been organized into six categories, reflecting the variety of theoretical approaches and application domains of research into serious games: 1. The Serious Games and Game Design 2. User experience, User Evaluation and User Analysis in Serious Games 3. Serious Games for Instruction 4. Serious Games for Health, Wellbeing and Social Change 5. Evaluating and Assessing Serious Games Elements 6. Posters
This Lecture book is about objective image quality assessment—where the aim is to provide computational models that can automatically predict perceptual image quality. The early years of the 21st century have witnessed a tremendous growth in the use of digital images as a means for representing and communicating information. A considerable percentage of this literature is devoted to methods for improving the appearance of images, or for maintaining the appearance of images that are processed. Nevertheless, the quality of digital images, processed or otherwise, is rarely perfect. Images are subject to distortions during acquisition, compression, transmission, processing, and reproduction. To maintain, control, and enhance the quality of images, it is important for image acquisition, management, communication, and processing systems to be able to identify and quantify image quality degradations. The goals of this book are as follows; a) to introduce the fundamentals of image quality assessment, and to explain the relevant engineering problems, b) to give a broad treatment of the current state-of-the-art in image quality assessment, by describing leading algorithms that address these engineering problems, and c) to provide new directions for future research, by introducing recent models and paradigms that significantly differ from those used in the past. The book is written to be accessible to university students curious about the state-of-the-art of image quality assessment, expert industrial R&D engineers seeking to implement image/video quality assessment systems for specific applications, and academic theorists interested in developing new algorithms for image quality assessment or using existing algorithms to design or optimize other image processing applications.
This both accessible and exhaustive book will help to improve modeling of attention and to inspire innovations in industry. It introduces the study of attention and focuses on attention modeling, addressing such themes as saliency models, signal detection and different types of signals, as well as real-life applications. The book is truly multi-disciplinary, collating work from psychology, neuroscience, engineering and computer science, amongst other disciplines. What is attention? We all pay attention every single moment of our lives. Attention is how the brain selects and prioritizes information. The study of attention has become incredibly complex and divided: this timely volume assists the reader by drawing together work on the computational aspects of attention from across the disciplines. Those working in the field as engineers will benefit from this book’s introduction to the psychological and biological approaches to attention, and neuroscientists can learn about engineering work on attention. The work features practical reviews and chapters that are quick and easy to read, as well as chapters which present deeper, more complex knowledge. Everyone whose work relates to human perception, to image, audio and video processing will find something of value in this book, from students to researchers and those in industry.
55% new material in the latest edition of this "must-have for students and practitioners of image & video processing!This Handbook is intended to serve as the basic reference point on image and video processing, in the field, in the research laboratory, and in the classroom. Each chapter has been written by carefully selected, distinguished experts specializing in that topic and carefully reviewed by the Editor, Al Bovik, ensuring that the greatest depth of understanding be communicated to the reader. Coverage includes introductory, intermediate and advanced topics and as such, this book serves equally well as classroom textbook as reference resource. • Provides practicing engineers and students with a highly accessible resource for learning and using image/video processing theory and algorithms • Includes a new chapter on image processing education, which should prove invaluable for those developing or modifying their curricula • Covers the various image and video processing standards that exist and are emerging, driving today's explosive industry • Offers an understanding of what images are, how they are modeled, and gives an introduction to how they are perceived • Introduces the necessary, practical background to allow engineering students to acquire and process their own digital image or video data • Culminates with a diverse set of applications chapters, covered in sufficient depth to serve as extensible models to the reader's own potential applications About the Editor... Al Bovik is the Cullen Trust for Higher Education Endowed Professor at The University of Texas at Austin, where he is the Director of the Laboratory for Image and Video Engineering (LIVE). He has published over 400 technical articles in the general area of image and video processing and holds two U.S. patents. Dr. Bovik was Distinguished Lecturer of the IEEE Signal Processing Society (2000), received the IEEE Signal Processing Society Meritorious Service Award (1998), the IEEE Third Millennium Medal (2000), and twice was a two-time Honorable Mention winner of the international Pattern Recognition Society Award. He is a Fellow of the IEEE, was Editor-in-Chief, of the IEEE Transactions on Image Processing (1996-2002), has served on and continues to serve on many other professional boards and panels, and was the Founding General Chairman of the IEEE International Conference on Image Processing which was held in Austin, Texas in 1994.* No other resource for image and video processing contains the same breadth of up-to-date coverage* Each chapter written by one or several of the top experts working in that area* Includes all essential mathematics, techniques, and algorithms for every type of image and video processing used by electrical engineers, computer scientists, internet developers, bioengineers, and scientists in various, image-intensive disciplines
Visual perception is a complex process requiring interaction between the receptors in the eye that sense the stimulus and the neural system and the brain that are responsible for communicating and interpreting the sensed visual information. This process involves several physical, neural, and cognitive phenomena whose understanding is essential to design effective and computationally efficient imaging solutions. Building on advances in computer vision, image and video processing, neuroscience, and information engineering, perceptual digital imaging greatly enhances the capabilities of traditional imaging methods. Filling a gap in the literature, Perceptual Digital Imaging: Methods and Applications comprehensively covers the system design, implementation, and application aspects of this emerging specialized area. It gives readers a strong, fundamental understanding of theory and methods, providing a foundation on which solutions for many of the most interesting and challenging imaging problems can be built. The book features contributions by renowned experts who present the state of the art and recent trends in image acquisition, processing, storage, display, and visual quality evaluation. They detail advances in the field and explore human visual system-driven approaches across a broad spectrum of applications, including: Image quality and aesthetics assessment Digital camera imaging White balancing and color enhancement Thumbnail generation Image restoration Super-resolution imaging Digital halftoning and dithering Color feature extraction Semantic multimedia analysis and processing Video shot characterization Image and video encryption Display quality enhancement This is a valuable resource for readers who want to design and implement more effective solutions for cutting-edge digital imaging, computer vision, and multimedia applications. Suitable as a graduate-level textbook or stand-alone reference for researchers and practitioners, it provides a unique overview of an important and rapidly developing research field.
This book constitutes the proceedings of the First International Conference on Computational Intelligence and Information Technology, CIIT 2011, held in Pune, India, in November 2011. The 58 revised full papers, 67 revised short papers, and 32 poster papers presented were carefully reviewed and selected from 483 initial submissions. The papers are contributed by innovative academics and industrial experts in the field of computer science, information technology, computational engineering, mobile communication and security and offer a stage to a common forum, where a constructive dialog on theoretical concepts, practical ideas and results of the state of the art can be developed.