Download Free Computational Movement Analysis Book in PDF and EPUB Free Download. You can read online Computational Movement Analysis and write the review.

This SpringerBrief discusses the characteristics of spatiotemporal movement data, including uncertainty and scale. It investigates three core aspects of Computational Movement Analysis: Conceptual modeling of movement and movement spaces, spatiotemporal analysis methods aiming at a better understanding of movement processes (with a focus on data mining for movement patterns), and using decentralized spatial computing methods in movement analysis. The author presents Computational Movement Analysis as an interdisciplinary umbrella for analyzing movement processes with methods from a range of fields including GIScience, spatiotemporal databases and data mining. Key challenges in Computational Movement Analysis include bridging the semantic gap, privacy issues when movement data involves people, incorporating big and open data, and opportunities for decentralized movement analysis arising from the internet of things. The interdisciplinary concepts of Computational Movement Analysis make this an important book for professionals and students in computer science, geographic information science and its application areas, especially movement ecology and transportation research.
Computer science provides a powerful tool that was virtually unknown three generations ago. Some of the classical fields of knowledge are geodesy (surveying), cartography, and geography. Electronics have revolutionized geodetic methods. Cartography has faced the dominance of the computer that results in simplified cartographic products. All three fields make use of basic components such as the Internet and databases. The Springer Handbook of Geographic Information is organized in three parts, Basics, Geographic Information and Applications. Some parts of the basics belong to the larger field of computer science. However, the reader gets a comprehensive view on geographic information because the topics selected from computer science have a close relation to geographic information. The Springer Handbook of Geographic Information is written for scientists at universities and industry as well as advanced and PhD students.
Geocomputation with R is for people who want to analyze, visualize and model geographic data with open source software. It is based on R, a statistical programming language that has powerful data processing, visualization, and geospatial capabilities. The book equips you with the knowledge and skills to tackle a wide range of issues manifested in geographic data, including those with scientific, societal, and environmental implications. This book will interest people from many backgrounds, especially Geographic Information Systems (GIS) users interested in applying their domain-specific knowledge in a powerful open source language for data science, and R users interested in extending their skills to handle spatial data. The book is divided into three parts: (I) Foundations, aimed at getting you up-to-speed with geographic data in R, (II) extensions, which covers advanced techniques, and (III) applications to real-world problems. The chapters cover progressively more advanced topics, with early chapters providing strong foundations on which the later chapters build. Part I describes the nature of spatial datasets in R and methods for manipulating them. It also covers geographic data import/export and transforming coordinate reference systems. Part II represents methods that build on these foundations. It covers advanced map making (including web mapping), "bridges" to GIS, sharing reproducible code, and how to do cross-validation in the presence of spatial autocorrelation. Part III applies the knowledge gained to tackle real-world problems, including representing and modeling transport systems, finding optimal locations for stores or services, and ecological modeling. Exercises at the end of each chapter give you the skills needed to tackle a range of geospatial problems. Solutions for each chapter and supplementary materials providing extended examples are available at https://geocompr.github.io/geocompkg/articles/. Dr. Robin Lovelace is a University Academic Fellow at the University of Leeds, where he has taught R for geographic research over many years, with a focus on transport systems. Dr. Jakub Nowosad is an Assistant Professor in the Department of Geoinformation at the Adam Mickiewicz University in Poznan, where his focus is on the analysis of large datasets to understand environmental processes. Dr. Jannes Muenchow is a Postdoctoral Researcher in the GIScience Department at the University of Jena, where he develops and teaches a range of geographic methods, with a focus on ecological modeling, statistical geocomputing, and predictive mapping. All three are active developers and work on a number of R packages, including stplanr, sabre, and RQGIS.
"This book provides information regarding state-of-the-art research outcomes and cutting-edge technology on various aspects of the human movement"--Provided by publisher.
The five volume set LNCS 10960 until 10964 constitutes the refereed proceedings of the 18th International Conference on Computational Science and Its Applications, ICCSA 2018, held in Melbourne, Australia, in July 2018. Apart from the general tracks, ICCSA 2018 also includes 34 international workshops in various areas of computational sciences, ranging from computational science technologies, to specific areas of computational sciences, such as computer graphics and virtual reality.
Providing an authoritative assessment of the current landscape of spatial analysis in the social sciences, this cutting-edge Handbook covers the full range of standard and emerging methods across the social science domain areas in which these methods are typically applied. Accessible and comprehensive, it expertly answers the key questions regarding the dynamic intersection of spatial analysis and the social sciences.
This book presents the foundations of key problems in computational molecular biology and bioinformatics. It focuses on computational and statistical principles applied to genomes, and introduces the mathematics and statistics that are crucial for understanding these applications. The book features a free download of the R software statistics package and the text provides great crossover material that is interesting and accessible to students in biology, mathematics, statistics and computer science. More than 100 illustrations and diagrams reinforce concepts and present key results from the primary literature. Exercises are given at the end of chapters.
This book constitutes the refereed proceedings of the 8th International Conference on Social Computing, Behavioral-Cultural Modeling, and Prediction, SBP 2015, held in Washington, DC, USA, in March/April 2015. The 24 full papers presented together with 36 poster papers were carefully reviewed and selected from 118 submissions. The goal of the conference was to advance our understanding of human behavior through the development and application of mathematical, computational, statistical, simulation, predictive and other models that provide fundamental insights into factors contributing to human socio-cultural dynamics. The topical areas addressed by the papers are social and behavioral sciences, health sciences, engineering, computer and information science.
Many important planning decisions in society and business depend on proper knowledge and a correct understanding of movement, be it in transportation, logistics, biology, or the life sciences. Today the widespread use of mobile phones and technologies like GPS and RFID provides an immense amount of data on location and movement. What is needed are new methods of visualization and algorithmic data analysis that are tightly integrated and complement each other to allow end-users and analysts to extract useful knowledge from these extremely large data volumes. This is exactly the topic of this book. As the authors show, modern visual analytics techniques are ready to tackle the enormous challenges brought about by movement data, and the technology and software needed to exploit them are available today. The authors start by illustrating the different kinds of data available to describe movement, from individual trajectories of single objects to multiple trajectories of many objects, and then proceed to detail a conceptual framework, which provides the basis for a fundamental understanding of movement data. With this basis, they move on to more practical and technical aspects, focusing on how to transform movement data to make it more useful, and on the infrastructure necessary for performing visual analytics in practice. In so doing they demonstrate that visual analytics of movement data can yield exciting insights into the behavior of moving persons and objects, but can also lead to an understanding of the events that transpire when things move. Throughout the book, they use sample applications from various domains and illustrate the examples with graphical depictions of both the interactive displays and the analysis results. In summary, readers will benefit from this detailed description of the state of the art in visual analytics in various ways. Researchers will appreciate the scientific precision involved, software technologists will find essential information on algorithms and systems, and practitioners will profit from readily accessible examples with detailed illustrations for practical purposes.
Computer science provides a powerful tool that was virtually unknown three generations ago. Some of the classical fields of knowledge are geodesy (surveying), cartography, and geography. Electronics have revolutionized geodetic methods. Cartography has faced the dominance of the computer that results in simplified cartographic products. All three fields make use of basic components such as the Internet and databases. The Springer Handbook of Geographic Information is organized in three parts, Basics, Geographic Information and Applications. Some parts of the basics belong to the larger field of computer science. However, the reader gets a comprehensive view on geographic information because the topics selected from computer science have a close relation to geographic information. The Springer Handbook of Geographic Information is written for scientists at universities and industry as well as advanced and PhD students.