Download Free Computational Morphology Book in PDF and EPUB Free Download. You can read online Computational Morphology and write the review.

Previous work on morphology has largely tended either to avoid precise computational details or to ignore linguistic generality. Computational Morphologyis the first book to present an integrated set of techniques for the rigorous description of morphological phenomena in English and similar languages. By taking account of all facets of morphological analysis, it provides a linguistically general and computationally practical dictionary system for use within an English parsing program. The authors covermorphographemics (variations in spelling as words are built from their component morphemes),morphotactics (the ways that different classes of morphemes can combine, and the types of words that result), andlexical redundancy (patterns of similarity and regularity among the lexical entries for words). They propose a precise rule-notation for each of these areas of linguistic description and present the algorithms for using these rules computationally to manipulate dictionary information. These mechanisms have been implemented in practical and publicly available software, which is described in detail, and appendixes contain a large number of computer-tested sets of rules and lexical entries for English. Graeme D. Ritchie is a Senior Lecturer in the Department of Artificial Intelligence at the University of Edinburgh, where Alan W. Black is currently a research student. Graham J. Russell is a Research Fellow at ISSCO (Institut Dalle Molle pour les etudes semantiques et cognitives) in Geneva, and Stephen G. Pulman is a Lecturer in the University of Cambridge Computer Laboratory and Director of SRI International's Cambridge Computer Science Research Centre.
This book provides the first broad yet thorough coverage of issues in morphological theory. It includes a wide array of techniques and systems in computational morphology (including discussion of their limitations), and describes some unusual applications.Sproat motivates the study of computational morphology by arguing that a computational natural language system, such as a parser or a generator, must incorporate a model of morphology. He discusses a range of applications for programs with knowledge of morphology, some of which are not generally found in the literature. Sproat then provides an overview of some of the basic descriptive facts about morphology and issues in theoretical morphology and (lexical) phonology, as well as psycholinguistic evidence for human processing of morphological structure. He take up the basic techniques that have been proposed for doing morphological processing and discusses at length various systems (such as DECOMP and KIMMO) that incorporate part or all of those techniques, pointing out the inadequacies of such systems from both a descriptive and a computational point of view. He concludes by touching on interesting peripheral areas such as the analysis of complex nominals in English, and on the main contributions of Rumelhart and McClelland's connectionism to the computational analysis of words.
Computational Geometry is a new discipline of computer science that deals with the design and analysis of algorithms for solving geometric problems. There are many areas of study in different disciplines which, while being of a geometric nature, have as their main component the extraction of a description of the shape or form of the input data. This notion is more imprecise and subjective than pure geometry. Such fields include cluster analysis in statistics, computer vision and pattern recognition, and the measurement of form and form-change in such areas as stereology and developmental biology.This volume is concerned with a new approach to the study of shape and form in these areas. Computational morphology is thus concerned with the treatment of morphology from the computational geometry point of view. This point of view is more formal, elegant, procedure-oriented, and clear than many previous approaches to the problem and often yields algorithms that are easier to program and have lower complexity.
The book will appeal to scholars and advanced students of morphology, syntax, computational linguistics and natural language processing (NLP). It provides a critical and practical guide to computational techniques for handling morphological and syntactic phenomena, showing how these techniques have been used and modified in practice. The authors discuss the nature and uses of syntactic parsers and examine the problems and opportunities of parsing algorithms for finite-state, context-free and various context-sensitive grammars. They relate approaches for describing syntax and morphology to formal mechanisms and algorithms, and present well-motivated approaches for augmenting grammars with weights or probabilities.
By the late 1970s phonologists, and later morphologists, had departed from a linear approach for describing morphophonological operations to a nonlinear one. Computational models, however, remain faithful to the linear model, making it very difficult, if not impossible, to implement the morphology of languages whose morphology is nonconcatanative. Computational Nonlinear Morphology aims at presenting a computational system that counters the development in linguistics. It provides a detailed computational analysis of the complex morphophonological phenomena found in Semitic languages based on linguistically motivated models.
This book constitutes the refereed proceedings of the 4th International Workshop on Systems and Frameworks for Computational Morphology, SFCM 2015, held in Stuttgart, Germany, in September 2015. The 5 revised full papers and 5 short papers presented were carefully reviewed and selected from 16 submissions. The SFCM Workshops focus on linguistically motivated morphological analysis and generation, computational frameworks for implementing such systems, and linguistic frameworks suitable for computational implementation. SFCM 2015 and the papers presented in this volume aim at broadening the scope to include research on very underresourced languages, interactions between computational morphology and formal, quantitative, and descriptive morphology, as well as applications of computational morphology in the Digital Humanities.
From the point of view of computational linguistics, morphological resources are the basis for all higher-level applications. This is especially true for languages with a rich morphology, such as German or Finnish. A morphology component should thus be capable of analyzing single word forms as well as whole corpora. For many practical applications, not only morphological analysis, but also generation is required, i.e., the production of surfaces corresponding to speci?c categories. Apart from uses in computational linguistics, there are also numerous practical - plications that either require morphological analysis and generation or that can greatly bene?t from it, for example, in text processing, user interfaces, or information - trieval. These applications have speci?c requirements for morphological components, including requirements from software engineering, such as programming interfaces or robustness. In 1994, the First Morpholympics took place at the University of Erlangen- Nuremberg, a competition between several systems for the analysis and generation of German word forms. Eight systems participated in the First Morpholympics; the conference proceedings [1] thus give a very good overview of the state of the art in computational morphologyfor German as of 1994.
This handbook of computational linguistics, written for academics, graduate students and researchers, provides a state-of-the-art reference to one of the most active and productive fields in linguistics.
This is the first comprehensive overview of computational approaches to Arabic morphology. The subtitle aims to reflect that widely different computational approaches to the Arabic morphological system have been proposed. The book provides a showcase of the most advanced language technologies applied to one of the most vexing problems in linguistics. It covers knowledge-based and empirical-based approaches.
Mathematical morphology (MM) is a theory for the analysis of spatial structures. It is called morphology since it aims at analysing the shape and form of objects, and it is mathematical in the sense that the analysis is based on set theory, topology, lattice algebra, random functions, etc. MM is not only a theory, but also a powerful image analysis technique. The purpose of the present book is to provide the image analysis community with a snapshot of current theoretical and applied developments of MM. The book consists of forty-five contributions classified by subject. It demonstrates a wide range of topics suited to the morphological approach.