Download Free Computational Methods In Water Resources Xiii Computational Methods Surface Water Systems And Hydrology Book in PDF and EPUB Free Download. You can read online Computational Methods In Water Resources Xiii Computational Methods Surface Water Systems And Hydrology and write the review.

Discusses a dozen topics related to mathematical and computational issues in geophysical fluid and solid mechanics, including local grid refinement for reservoir simulation, a method of factoring long z-transform polynomials, and the finite element modelling of surface flow problems. See entry QC155
Data on water quality and other environmental issues are being collected at an ever-increasing rate. In the past, however, the techniques used by scientists to interpret this data have not progressed as quickly. This is a book of modern statistical methods for analysis of practical problems in water quality and water resources.The last fifteen years have seen major advances in the fields of exploratory data analysis (EDA) and robust statistical methods. The 'real-life' characteristics of environmental data tend to drive analysis towards the use of these methods. These advances are presented in a practical and relevant format. Alternate methods are compared, highlighting the strengths and weaknesses of each as applied to environmental data. Techniques for trend analysis and dealing with water below the detection limit are topics covered, which are of great interest to consultants in water-quality and hydrology, scientists in state, provincial and federal water resources, and geological survey agencies.The practising water resources scientist will find the worked examples using actual field data from case studies of environmental problems, of real value. Exercises at the end of each chapter enable the mechanics of the methodological process to be fully understood, with data sets included on diskette for easy use. The result is a book that is both up-to-date and immediately relevant to ongoing work in the environmental and water sciences.
Numerical methods provide a powerful and essential tool for the solution of problems of water resources. This book gives an elementary introduction to the various methods in current use and demonstrates that different methods work well in different situations and some problems requirecombinations of methods. It is essential to know something of all of them in order to make a reasoned judgement of current practice. Their applications are discussed and more specialised versions are outlined along with many references making this an invaluable, comprehensive coverage of thefield.
Chittaranjan Ray, Ph. D. , P. E. University of Hawaii at Mãnoa Honolulu, Hawaii, United States Jürgen Schubert, M. Sc. Stadtwerke Düsseldorf AG Düsseldorf, Germany Ronald B. Linsky National Water Research Institute Fountain Valley, California, United States Gina Melin National Water Research Institute Fountain Valley, California, United States 1. What is Riverbank Filtration? The purpose ofthis book is to show that riverbank filtration (RBF) isa low-cost and efficient alternative water treatment for drinking-water applications. There are two immediate benefits to the increased use of RBF: Minimized need for adding chemicals like disinfectants and coagulants to surface water to control pathogens. Decreased costs to the community without increased risk to human health. Butwhat,exactly, isRBF? In humid regions, river water naturally percolates through the ground into aquifers (which are layers of sand and gravel that contain water underground) during high-flow conditions. In arid regions, most rivers lose flow, and the percolating water passes through soil and aquifer material until it reaches the water table. During these percolation processes, potential contaminants present in river water are filtered and attenuated. If there are no other contaminants present in the aquifer or ifthe respective contaminants are present at lower concentrations, the quality of water in the aquifer can be ofhigher quality than that found in theriver. In RBF, production wells — which are placed near the banks ofrivers —pump large quantities ofwater.
This book deals with environmental effects on both sides of the border between Bangladesh and India caused by the Ganges water diversion. This issue came to my attention in early 1976 when news media in Bangladesh and overseas, began publications of articles on the unilateral withdrawal of a huge quantity of water from the Ganges River through the commissioning of the Farakka Barrage in India. I first pursued the subject professionally in 1984 while working as a contributor for Bangladesh Today, Holiday and New Nation. During the next two decades, I followed the protracted hydro-political negotiations between the riparian countries in the Ganges basin, and I traveled extensively to observe the environmental and ecological changes in Bangladesh as well as India that occurred due to the water diversion. The Ganges, one of the longest rivers of the world originates at the Gangotri glacier in the Himalayas and flows across the plains of North India. Eventually the river splits into two main branches and empties into the Bay of Bengal. The conflict of diversion and sharing of the Ganges water arose in the middle of the last century when the government of India decided to implement a barrage at Farakka to resolve a navigation problem at the Kolkata Port.
This book is divided into four parts. The first part, Preliminaries, begins by introducing the basic theme of the book. It provides an overview of the current status of water resources utilization, the likely scenario of future demands, and advantages and disadvantages of systems techniques. An understanding of how the hydrological data are measured and processed is important before undertaking any analysis. The discussion is extended to emerging techniques, such as Remote Sensing, GIS, Artificial Neural Networks, and Expert Systems. The statistical tools for data analysis including commonly used probability distributions, parameter estimation, regression and correlation, frequency analysis, and time-series analysis are discussed in a separate chapter. Part 2 Decision Making, is a bouquet of techniques organized in 4 chapters. After discussing optimization and simulation, the techniques of economic analysis are covered. Recently, environmental and social aspects, and rehabilitation and resettlement of project-affected people have come to occupy a central stage in water resources management and any good book is incomplete unless these topics are adequately covered. The concept of rational decision making along with risk, reliability, and uncertainty aspects form subject matter of a chapter. With these analytical tools, the practitioner is well equipped to take a rational decision for water resources utilization. Part 3 deals with Water Resources Planning and Development. This part discusses the concepts of planning, the planning process, integrated planning, public involvement, and reservoir sizing.The last part focuses on Systems Operation and Management. After a resource is developed, it is essential to manage it in the best possible way. Many dams around the world are losing some storage capacity every year due to sedimentation and therefore, the assessment and management of reservoir sedimentation is described in details. No analysis of water resources systems is complete without consideration of water quality. A river basin is the natural unit in which water occurs. The final chapter discusses various issues related to holistic management of a river basin.
This authoritative Encyclopedia provides an innovative approach to theory, reviews, applications and examples relevant to the basic concepts of water science and water management issues in order to facilitate better interdisciplinary cooperation.
As metropolises continue to see a growth in population, planners are continually searching for trending methods for utilizing space and seeking the best geographical arrangements for these cities. Professionals have continually used geographic information systems (GIS) to solve these issues; however, limitations in this technology remain prevalent. Integrating multiple-criteria decision analysis and evolutionary computing tools with GIS has created an array of robust solutions for spatial optimization problems in densely populated areas. Interdisciplinary Approaches to Spatial Optimization Issues is a pivotal reference source that provides vital research on advancements within the field of GIS and evolutionary solutions for spatial optimization issues. While highlighting topics such as computing machinery, vehicular routing, and operational research, this publication is ideally designed for practitioners, technicians, developers, academicians, students, government officials, planners, and researchers seeking current research on applications and improvements within spatial optimization and GIS.
Within this monograph a comprehensive and systematic knowledge on shallow-water hydrodynamics is presented. A two-dimensional system of shallow-water equations is analyzed, including the mathematical and mechanical backgrounds, the properties of the system and its solution. Also featured is a new mathematical simulation of shallow-water flows by compressible plane flows of a special virtual perfect gas, as well as practical algorithms such as FDM, FEM, and FVM. Some of these algorithms have been utilized in solving the system, while others have been utilized in various applied fields. An emphasis has been placed on several classes of high-performance difference schemes and boundary procedures which have found wide uses recently for solving the Euler equations of gas dynamics in aeronautical and aerospatial engineering. This book is constructed so that it may serve as a handbook for practicians. It will be of interest to scientists, designers, teachers, postgraduates and professionals in hydraulic, marine, and environmental engineering; especially those involved in the mathematical modelling of shallow-water bodies.