Download Free Computational Intelligence Techniques For New Product Design Book in PDF and EPUB Free Download. You can read online Computational Intelligence Techniques For New Product Design and write the review.

Applying computational intelligence for product design is a fast-growing and promising research area in computer sciences and industrial engineering. However, there is currently a lack of books, which discuss this research area. This book discusses a wide range of computational intelligence techniques for implementation on product design. It covers common issues on product design from identification of customer requirements in product design, determination of importance of customer requirements, determination of optimal design attributes, relating design attributes and customer satisfaction, integration of marketing aspects into product design, affective product design, to quality control of new products. Approaches for refinement of computational intelligence are discussed, in order to address different issues on product design. Cases studies of product design in terms of development of real-world new products are included, in order to illustrate the design procedures, as well as the effectiveness of the computational intelligence based approaches to product design. This book covers the state-of-art of computational intelligence methods for product design, which provides a clear picture to post-graduate students in industrial engineering and computer science. It is particularly suitable for researchers and professionals working on computational intelligence for product design. It provides concepts, techniques and methodologies, for product designers in applying computational intelligence to deal with product design.
Von der Produktidee über den Prototyp und die Modellsimulation bis zur Analyse: Dieser Band hilft Entwicklern und Designern beim Verständnis aller Abläufe im Zuge des Designs neuer Produkte, Prozesse und Systeme. Eine Fülle von Beispielen industrieller Anwendungen, realer Probleme und zugehöriger Lösungen hilft beim Vertiefen und Umsetzen des Stoffes. (05/00)
Several statistical techniques are used for the design of materials through extraction of knowledge from existing data banks. These approaches are getting more attention with the application of computational intelligence techniques. This book illustrates the alternative but effective methods of designing materials, where models are developed through capturing the inherent correlations among the variables on the basis of available imprecise knowledge in the form of rules or database, as well as through the extraction of knowledge from experimental or industrial database, and using optimization tools.
Applying computational intelligence for product design is a fast-growing and promising research area in computer sciences and industrial engineering. However, there is currently a lack of books, which discuss this research area. This book discusses a wide range of computational intelligence techniques for implementation on product design. It covers common issues on product design from identification of customer requirements in product design, determination of importance of customer requirements, determination of optimal design attributes, relating design attributes and customer satisfaction, integration of marketing aspects into product design, affective product design, to quality control of new products. Approaches for refinement of computational intelligence are discussed, in order to address different issues on product design. Cases studies of product design in terms of development of real-world new products are included, in order to illustrate the design procedures, as well as the effectiveness of the computational intelligence based approaches to product design. This book covers the state-of-art of computational intelligence methods for product design, which provides a clear picture to post-graduate students in industrial engineering and computer science. It is particularly suitable for researchers and professionals working on computational intelligence for product design. It provides concepts, techniques and methodologies, for product designers in applying computational intelligence to deal with product design.
This book presents the latest cutting-edge research, theoretical methods, and novel applications in the field of computational intelligence techniques and methods for combating fake news. Fake news is everywhere. Despite the efforts of major social network players such as Facebook and Twitter to fight disinformation, miracle cures and conspiracy theories continue to rain down on the net. Artificial intelligence can be a bulwark against the diversity of fake news on the Internet and social networks. This book discusses new models, practical solutions, and technological advances related to detecting and analyzing fake news based on computational intelligence models and techniques, to help decision-makers, managers, professionals, and researchers design new paradigms considering the unique opportunities associated with computational intelligence techniques. Further, the book helps readers understand computational intelligence techniques combating fake news in a systematic and straightforward way.
In theory, there is no difference between theory and practice. But, in practice, there is. Jan L. A. van de Snepscheut The ?ow of academic ideas in the area of computational intelligence has penetrated industry with tremendous speed and persistence. Thousands of applications have proved the practical potential of fuzzy logic, neural networks, evolutionary com- tation, swarm intelligence, and intelligent agents even before their theoretical foundation is completely understood. And the popularity is rising. Some software vendors have pronounced the new machine learning gold rush to “Transfer Data into Gold”. New buzzwords like “data mining”, “genetic algorithms”, and “swarm optimization” have enriched the top executives’ vocabulary to make them look more “visionary” for the 21st century. The phrase “fuzzy math” became political jargon after being used by US President George W. Bush in one of the election debates in the campaign in 2000. Even process operators are discussing the perf- mance of neural networks with the same passion as the performance of the Dallas Cowboys. However, for most of the engineers and scientists introducing computational intelligence technologies into practice, looking at the growing number of new approaches, and understanding their theoretical principles and potential for value creation becomes a more and more dif?cult task.
The first notable feature of this book is its innovation: Computational intelligence (CI), a fast evolving area, is currently attracting lots of researchers’ attention in dealing with many complex problems. At present, there are quite a lot competing books existing in the market. Nevertheless, the present book is markedly different from the existing books in that it presents new paradigms of CI that have rarely mentioned before, as opposed to the traditional CI techniques or methodologies employed in other books. During the past decade, a number of new CI algorithms are proposed. Unfortunately, they spread in a number of unrelated publishing directions which may hamper the use of such published resources. These provide us with motivation to analyze the existing research for categorizing and synthesizing it in a meaningful manner. The mission of this book is really important since those algorithms are going to be a new revolution in computer science. We hope it will stimulate the readers to make novel contributions or even start a new paradigm based on nature phenomena. Although structured as a textbook, the book's straightforward, self-contained style will also appeal to a wide audience of professionals, researchers and independent learners. We believe that the book will be instrumental in initiating an integrated approach to complex problems by allowing cross-fertilization of design principles from different design philosophies. The second feature of this book is its comprehensiveness: Through an extensive literature research, there are 134 innovative CI algorithms covered in this book.
Computational Intelligence Techniques and Their Applications to Software Engineering Problems focuses on computational intelligence approaches as applicable in varied areas of software engineering such as software requirement prioritization, cost estimation, reliability assessment, defect prediction, maintainability and quality prediction, size estimation, vulnerability prediction, test case selection and prioritization, and much more. The concepts of expert systems, case-based reasoning, fuzzy logic, genetic algorithms, swarm computing, and rough sets are introduced with their applications in software engineering. The field of knowledge discovery is explored using neural networks and data mining techniques by determining the underlying and hidden patterns in software data sets. Aimed at graduate students and researchers in computer science engineering, software engineering, information technology, this book: Covers various aspects of in-depth solutions of software engineering problems using computational intelligence techniques Discusses the latest evolutionary approaches to preliminary theory of different solve optimization problems under software engineering domain Covers heuristic as well as meta-heuristic algorithms designed to provide better and optimized solutions Illustrates applications including software requirement prioritization, software cost estimation, reliability assessment, software defect prediction, and more Highlights swarm intelligence-based optimization solutions for software testing and reliability problems
This book describes how to use computational intelligence and artificial intelligence tools to improve the decision-making process in new product development. These approaches, including artificial neural networks and constraint satisfaction solutions, enable a more precise prediction of product development performance compared to widely used multiple regression models. They support decision-makers by providing more reliable information regarding, for example, project portfolio selection and project scheduling. The book is appropriate for computer scientists, management scientists, students and practitioners engaged with product innovation and computational intelligence applications.
The textbook at hand aims to provide an introduction to the use of automated methods for gathering strategic competitive intelligence. Hereby, the text does not describe a singleton research discipline in its own right, such as machine learning or Web mining. It rather contemplates an application scenario, namely the gathering of knowledge that appears of paramount importance to organizations, e.g., companies and corporations. To this end, the book first summarizes the range of research disciplines that contribute to addressing the issue, extracting from each those grains that are of utmost relevance to the depicted application scope. Moreover, the book presents systems that put these techniques to practical use (e.g., reputation monitoring platforms) and takes an inductive approach to define the gestalt of mining for competitive strategic intelligence by selecting major use cases that are laid out and explained in detail. These pieces form the first part of the book. Each of those use cases is backed by a number of research papers, some of which are contained in its largely original version in the second part of the monograph.