Download Free Computational Intelligence In The Internet Of Things Book in PDF and EPUB Free Download. You can read online Computational Intelligence In The Internet Of Things and write the review.

In recent years, the need for smart equipment has increased exponentially with the upsurge in technological advances. To work to their fullest capacity, these devices need to be able to communicate with other devices in their network to exchange information and receive instructions. Computational Intelligence in the Internet of Things is an essential reference source that provides relevant theoretical frameworks and the latest empirical research findings in the area of computational intelligence and the Internet of Things. Featuring research on topics such as data analytics, machine learning, and neural networks, this book is ideally designed for IT specialists, managers, professionals, researchers, and academicians.
We have seen a sharp increase in the development of data transfer techniques in the networking industry over the past few years. We can see that the photos are assisting clinicians in detecting infection in patients even in the current COVID-19 pandemic condition. With the aid of ML/AI, medical imaging, such as lung X-rays for COVID-19 infection, is crucial in the early detection of many diseases. We also learned that in the COVID-19 scenario, both wired and wireless networking are improved for data transfer but have network congestion. An intriguing concept that has the ability to reduce spectrum congestion and continuously offer new network services is providing wireless network virtualization. The degree of virtualization and resource sharing varies between the paradigms. Each paradigm has both technical and non-technical issues that need to be handled before wireless virtualization becomes a common technology. For wireless network virtualization to be successful, these issues need careful design and evaluation. Future wireless network architecture must adhere to a number of Quality of Service (QoS) requirements. Virtualization has been extended to wireless networks as well as conventional ones. By enabling multi-tenancy and tailored services with a wider range of carrier frequencies, it improves efficiency and utilization. In the IoT environment, wireless users are heterogeneous, and the network state is dynamic, making network control problems extremely difficult to solve as dimensionality and computational complexity keep rising quickly. Deep Reinforcement Learning (DRL) has been developed by the use of Deep Neural Networks (DNNs) as a potential approach to solve high-dimensional and continuous control issues effectively. Deep Reinforcement Learning techniques provide great potential in IoT, edge and SDN scenarios and are used in heterogeneous networks for IoT-based management on the QoS required by each Software Defined Network (SDN) service. While DRL has shown great potential to solve emerging problems in complex wireless network virtualization, there are still domain-specific challenges that require further study, including the design of adequate DNN architectures with 5G network optimization issues, resource discovery and allocation, developing intelligent mechanisms that allow the automated and dynamic management of the virtual communications established in the SDNs which is considered as research perspective.
This book aims at offering a unique collection of ideas and experiences mainly focusing on the main streams and merger of Artificial Intelligence (AI) and the Internet of Things (IoT) for a wide slice of the communication and networking community. In the era when the world is grappling with many unforeseen challenges, scientists and researchers are envisioning smart cyber systems that guarantee sustainable development for a better human life. The main contributors that destined to play a huge role in developing such systems, among others, are AI and IoT. While AI provides intelligence to machines and data by identifying patterns, developing predictions, and detecting anomalies, IoT performs as a nerve system by connecting a huge number of machines and capturing an enormous amount of data. AI-enabled IoT, therefore, redefines the way industries, businesses, and economies function with increased automation and efficiency and reduced human interaction and costs. This book is an attempt to publish innovative ideas, emerging trends, implementation experience, and use-cases pertaining to the merger of AI and IoT. The primary market of this book is centered around students, researchers, academicians, industrialists, entrepreneurs, and professionals working in electrical/computer engineering, IT, telecom/electronic engineering, and related fields. The secondary market of this book is related to individuals working in the fields such as finance, management, mathematics, physics, environment, mechatronics, and the automation industry.
This book gathers recent research work on emerging Artificial Intelligence (AI) methods for processing and storing data generated by cloud-based Internet of Things (IoT) infrastructures. Major topics covered include the analysis and development of AI-powered mechanisms in future IoT applications and architectures. Further, the book addresses new technological developments, current research trends, and industry needs. Presenting case studies, experience and evaluation reports, and best practices in utilizing AI applications in IoT networks, it strikes a good balance between theoretical and practical issues. It also provides technical/scientific information on various aspects of AI technologies, ranging from basic concepts to research grade material, including future directions. The book is intended for researchers, practitioners, engineers and scientists involved in the design and development of protocols and AI applications for IoT-related devices. As the book covers a wide range of mobile applications and scenarios where IoT technologies can be applied, it also offers an essential introduction to the field.
This book provides an insight into IoT intelligence in terms of applications and algorithmic challenges. The book is dedicated to addressing the major challenges in realizing the artificial intelligence in IoT-based applications including challenges that vary from cost and energy efficiency to availability to service quality in multidisciplinary fashion. The aim of this book is hence to focus on both the algorithmic and practical parts of the artificial intelligence approaches in IoT applications that are enabled and supported by wireless sensor networks and cellular networks. Targeted readers are from varying disciplines who are interested in implementing the smart planet/environments vision via intelligent wireless/wired enabling technologies. Includes the most up-to-date research and applications related to IoT artificial intelligence (AI); Provides new and innovative operational ideas regarding the IoT artificial intelligence that help advance the telecommunications industry; Presents AI challenges facing the IoT scientists and provides potential ways to solve them in critical daily life issues.
Artificial Intelligence for the Internet of Everything considers the foundations, metrics and applications of IoE systems. It covers whether devices and IoE systems should speak only to each other, to humans or to both. Further, the book explores how IoE systems affect targeted audiences (researchers, machines, robots, users) and society, as well as future ecosystems. It examines the meaning, value and effect that IoT has had and may have on ordinary life, in business, on the battlefield, and with the rise of intelligent and autonomous systems. Based on an artificial intelligence (AI) perspective, this book addresses how IoE affects sensing, perception, cognition and behavior. Each chapter addresses practical, measurement, theoretical and research questions about how these "things may affect individuals, teams, society or each other. Of particular focus is what may happen when these "things begin to reason, communicate and act autonomously on their own, whether independently or interdependently with other "things. - Considers the foundations, metrics and applications of IoE systems - Debates whether IoE systems should speak to humans and each other - Explores how IoE systems affect targeted audiences and society - Discusses theoretical IoT ecosystem models
This book discusses research in Artificial Intelligence for the Internet of Health Things. It investigates and explores the possible applications of machine learning, deep learning, soft computing, and evolutionary computing techniques in design, implementation, and optimization of challenging healthcare solutions. This book features a wide range of topics such as AI techniques, IoT, cloud, wearables, and secured data transmission. Written for a broad audience, this book will be useful for clinicians, health professionals, engineers, technology developers, IT consultants, researchers, and students interested in the AI-based healthcare applications. Provides a deeper understanding of key AI algorithms and their use and implementation within the wider healthcare sector Explores different disease diagnosis models using machine learning, deep learning, healthcare data analysis, including machine learning, and data mining and soft computing algorithms Discusses detailed IoT, wearables, and cloud-based disease diagnosis model for intelligent systems and healthcare Reviews different applications and challenges across the design, implementation, and management of intelligent systems and healthcare data networks Introduces a new applications and case studies across all areas of AI in healthcare data K. Shankar (Member, IEEE) is a Postdoctoral Fellow of the Department of Computer Applications, Alagappa University, Karaikudi, India. Eswaran Perumal is an Assistant Professor of the Department of Computer Applications, Alagappa University, Karaikudi, India. Dr. Deepak Gupta is an Assistant Professor of the Department Computer Science & Engineering, Maharaja Agrasen Institute of Technology (GGSIPU), Delhi, India.
This book covers all the emerging trends in artificial intelligence (AI) and the Internet of Things (IoT). The Internet of Things is a term that has been introduced in recent years to define devices that are able to connect and transfer data to other devices via the Internet. While IoT and sensors have the ability to harness large volumes of data, AI can learn patterns in the data and quickly extract insights in order to automate tasks for a variety of business benefits. Machine learning, an AI technology, brings the ability to automatically identify patterns and detect anomalies in the data that smart sensors and devices generate, and it can have significant advantages over traditional business intelligence tools for analyzing IoT data, including being able to make operational predictions up to 20 times earlier and with greater accuracy than threshold-based monitoring systems. Further, other AI technologies, such as speech recognition and computer vision can help extract insights from data that used to require human review. The powerful combination of AI and IoT technology is helping to avoid unplanned downtime, increase operating efficiency, enable new products and services, and enhance risk management.
This book reveals the applications of AI and IoT in smart healthcare and medical systems. It provides core principles, algorithms, protocols, emerging trends, security problems, and the latest e-healthcare services findings. The book also provides case studies and discusses how AI and IoT applications such as wireless devices, sensors, and deep learning could play a major role in assisting patients, doctors, and pharmaceutical staff. It focuses on how to use AI and IoT to keep patients safe and healthy and, at the same time, empower physicians to deliver superlative care. This book is written for researchers and practitioners working in the information technology, computer science, and medical equipment manufacturing industry for products and services having basic- and high-level AI and IoT applications. The book is also a useful guide for academic researchers and students.
This new volume illustrates the diverse applications of IoT. The volume addresses the crucial issue of data safekeeping along with the development of a new cryptographic and security technology as well as a range of other advances in IoT. The volume looks at the application of IoT in medical technology and healthcare, including the design of IoT-based mobile healthcare units and a blockchain technique based smart health record system. Other topics include a blended IoT-enabled learning approach through a study employing clustering techniques, an IoT-enabled garbage disposal system with an advanced message notification system through an android application, IoT-based self-healing concrete that uses bacteria and environmental waste, an IoT-enabled trash-the-ash application that regulates flow, and more. The fresh and innovative advances that demonstrate computational intelligence and IoT in practice that are discussed in this volume will be informative for academicians, scholars, scientists, industry professionals, policymakers, government and non-government organizations, and others.