Download Free Computational Intelligence In Remanufacturing Book in PDF and EPUB Free Download. You can read online Computational Intelligence In Remanufacturing and write the review.

In attempts to reduce greenhouse gas emissions, many alternatives to manufacturing have been recommended from a number of international organizations. Although challenges will arise, remanufacturing has the ability to transform ecological and business value. Computational Intelligence in Remanufacturing introduces various computational intelligence techniques that are applied to remanufacturing-related issues, results, and lessons from specific applications while highlighting future development and research. This book is an essential reference for students, researchers, and practitioners in mechanical, industrial, and electrical engineering.
The book focuses on smart computing for crowdfunding usage, looking at the crowdfunding landscape, e.g., reward-, donation-, equity-, P2P-based and the crowdfunding ecosystem, e.g., regulator, asker, backer, investor, and operator. The increased complexity of fund raising scenario, driven by the broad economic environment as well as the need for using alternative funding sources, has sparked research in smart computing techniques. Covering a wide range of detailed topics, the authors of this book offer an outstanding overview of the current state of the art; providing deep insights into smart computing methods, tools, and their applications in crowdfunding; exploring the importance of smart analysis, prediction, and decision-making within the fintech industry. This book is intended to be an authoritative and valuable resource for professional practitioners and researchers alike, as well as finance engineering, and computer science students who are interested in crowdfunding and other emerging fintech topics.
Many techniques have been developed to control the variety of dynamic systems. To develop those control techniques, it is fundamental to know the mathematical relations between the system inputs and outputs. Incorporating Nature-Inspired Paradigms in Computational Applications is a critical scholarly resource that examines the application of nature-inspired paradigms on system identification. Featuring coverage on a broad range of topics such as biogeographic computation, evolutionary control systems, and natural computing, this book is geared towards IT professionals, engineers, computer scientists, academicians, researchers, and graduate-level students seeking current research on the application of nature-inspired paradigms.
As technology continues to become more sophisticated, mimicking natural processes and phenomena also becomes more of a reality. Continued research in the field of natural computing enables an understanding of the world around us, in addition to opportunities for man-made computing to mirror the natural processes and systems that have existed for centuries. Nature-Inspired Computing: Concepts, Methodologies, Tools, and Applications takes an interdisciplinary approach to the topic of natural computing, including emerging technologies being developed for the purpose of simulating natural phenomena, applications across industries, and the future outlook of biologically and nature-inspired technologies. Emphasizing critical research in a comprehensive multi-volume set, this publication is designed for use by IT professionals, researchers, and graduate students studying intelligent computing.
Stochastic processes have a wide range of applications ranging from image processing, neuroscience, bioinformatics, financial management, and statistics. Mathematical, physical, and engineering systems use stochastic processes for modeling and reasoning phenomena. While comparing AI-stochastic systems with other counterpart systems, we are able to understand their significance, thereby applying new techniques to obtain new real-time results and solutions. Stochastic Processes and Their Applications in Artificial Intelligence opens doors for artificial intelligence experts to use stochastic processes as an effective tool in real-world problems in computational biology, speech recognition, natural language processing, and reinforcement learning. Covering key topics such as social media, big data, and artificial intelligence models, this reference work is ideal for mathematicians, industry professionals, researchers, scholars, academicians, practitioners, instructors, and students.
Probabilistic modeling represents a subject spanning many branches of mathematics, economics, and computer science to connect pure mathematics with applied sciences. Operational research also relies on this connection to enable the improvement of business functions and decision making. Analyzing Risk through Probabilistic Modeling in Operations Research is an authoritative reference publication discussing the various challenges in management and decision science. Featuring exhaustive coverage on a range of topics within operational research including, but not limited to, decision analysis, data mining, process modeling, probabilistic interpolation and extrapolation, and optimization methods, this book is an essential reference source for decision makers, academicians, researchers, advanced-level students, technology developers, and government officials interested in the implementation of probabilistic modeling in various business applications.
This book addresses emerging issues concerning the integration of artificial intelligence systems in our daily lives. It focuses on the cognitive, visual, social and analytical aspects of computing and intelligent technologies, and highlights ways to improve the acceptance, effectiveness, and efficiency of said technologies. Topics such as responsibility, integration and training are discussed throughout. The book also reports on the latest advances in systems engineering, with a focus on societal challenges and next-generation systems and applications for meeting them. Based on the AHFE 2020 Virtual Conference on Software and Systems Engineering, and the AHFE 2020 Virtual Conference on Artificial Intelligence and Social Computing, held on July 16–20, 2020, it provides readers with extensive information on current research and future challenges in these fields, together with practical insights into the development of innovative services for various purposes.
Control of an impartial balance between risks and returns has become important for investors, and having a combination of financial instruments within a portfolio is an advantage. Portfolio management has thus become very important for reaching a resolution in high-risk investment opportunities and addressing the risk-reward tradeoff by maximizing returns and minimizing risks within a given investment period for a variety of assets. Metaheuristic Approaches to Portfolio Optimization is an essential reference source that examines the proper selection of financial instruments in a financial portfolio management scenario in terms of metaheuristic approaches. It also explores common measures used for the evaluation of risks/returns of portfolios in real-life situations. Featuring research on topics such as closed-end funds, asset allocation, and risk-return paradigm, this book is ideally designed for investors, financial professionals, money managers, accountants, students, professionals, and researchers.
The five-volume set IFIP AICT 630, 631, 632, 633, and 634 constitutes the refereed proceedings of the International IFIP WG 5.7 Conference on Advances in Production Management Systems, APMS 2021, held in Nantes, France, in September 2021.* The 378 papers presented were carefully reviewed and selected from 529 submissions. They discuss artificial intelligence techniques, decision aid and new and renewed paradigms for sustainable and resilient production systems at four-wall factory and value chain levels. The papers are organized in the following topical sections: Part I: artificial intelligence based optimization techniques for demand-driven manufacturing; hybrid approaches for production planning and scheduling; intelligent systems for manufacturing planning and control in the industry 4.0; learning and robust decision support systems for agile manufacturing environments; low-code and model-driven engineering for production system; meta-heuristics and optimization techniques for energy-oriented manufacturing systems; metaheuristics for production systems; modern analytics and new AI-based smart techniques for replenishment and production planning under uncertainty; system identification for manufacturing control applications; and the future of lean thinking and practice Part II: digital transformation of SME manufacturers: the crucial role of standard; digital transformations towards supply chain resiliency; engineering of smart-product-service-systems of the future; lean and Six Sigma in services healthcare; new trends and challenges in reconfigurable, flexible or agile production system; production management in food supply chains; and sustainability in production planning and lot-sizing Part III: autonomous robots in delivery logistics; digital transformation approaches in production management; finance-driven supply chain; gastronomic service system design; modern scheduling and applications in industry 4.0; recent advances in sustainable manufacturing; regular session: green production and circularity concepts; regular session: improvement models and methods for green and innovative systems; regular session: supply chain and routing management; regular session: robotics and human aspects; regular session: classification and data management methods; smart supply chain and production in society 5.0 era; and supply chain risk management under coronavirus Part IV: AI for resilience in global supply chain networks in the context of pandemic disruptions; blockchain in the operations and supply chain management; data-based services as key enablers for smart products, manufacturing and assembly; data-driven methods for supply chain optimization; digital twins based on systems engineering and semantic modeling; digital twins in companies first developments and future challenges; human-centered artificial intelligence in smart manufacturing for the operator 4.0; operations management in engineer-to-order manufacturing; product and asset life cycle management for smart and sustainable manufacturing systems; robotics technologies for control, smart manufacturing and logistics; serious games analytics: improving games and learning support; smart and sustainable production and supply chains; smart methods and techniques for sustainable supply chain management; the new digital lean manufacturing paradigm; and the role of emerging technologies in disaster relief operations: lessons from COVID-19 Part V: data-driven platforms and applications in production and logistics: digital twins and AI for sustainability; regular session: new approaches for routing problem solving; regular session: improvement of design and operation of manufacturing systems; regular session: crossdock and transportation issues; regular session: maintenance improvement and lifecycle management; regular session: additive manufacturing and mass customization; regular session: frameworks and conceptual modelling for systems and services efficiency; regular session: optimization of production and transportation systems; regular session: optimization of supply chain agility and reconfigurability; regular session: advanced modelling approaches; regular session: simulation and optimization of systems performances; regular session: AI-based approaches for quality and performance improvement of production systems; and regular session: risk and performance management of supply chains *The conference was held online.
The first notable feature of this book is its innovation: Computational intelligence (CI), a fast evolving area, is currently attracting lots of researchers’ attention in dealing with many complex problems. At present, there are quite a lot competing books existing in the market. Nevertheless, the present book is markedly different from the existing books in that it presents new paradigms of CI that have rarely mentioned before, as opposed to the traditional CI techniques or methodologies employed in other books. During the past decade, a number of new CI algorithms are proposed. Unfortunately, they spread in a number of unrelated publishing directions which may hamper the use of such published resources. These provide us with motivation to analyze the existing research for categorizing and synthesizing it in a meaningful manner. The mission of this book is really important since those algorithms are going to be a new revolution in computer science. We hope it will stimulate the readers to make novel contributions or even start a new paradigm based on nature phenomena. Although structured as a textbook, the book's straightforward, self-contained style will also appeal to a wide audience of professionals, researchers and independent learners. We believe that the book will be instrumental in initiating an integrated approach to complex problems by allowing cross-fertilization of design principles from different design philosophies. The second feature of this book is its comprehensiveness: Through an extensive literature research, there are 134 innovative CI algorithms covered in this book.