Download Free Computational Intelligence Applications For Software Engineering Problems Book in PDF and EPUB Free Download. You can read online Computational Intelligence Applications For Software Engineering Problems and write the review.

Computational Intelligence Techniques and Their Applications to Software Engineering Problems focuses on computational intelligence approaches as applicable in varied areas of software engineering such as software requirement prioritization, cost estimation, reliability assessment, defect prediction, maintainability and quality prediction, size estimation, vulnerability prediction, test case selection and prioritization, and much more. The concepts of expert systems, case-based reasoning, fuzzy logic, genetic algorithms, swarm computing, and rough sets are introduced with their applications in software engineering. The field of knowledge discovery is explored using neural networks and data mining techniques by determining the underlying and hidden patterns in software data sets. Aimed at graduate students and researchers in computer science engineering, software engineering, information technology, this book: Covers various aspects of in-depth solutions of software engineering problems using computational intelligence techniques Discusses the latest evolutionary approaches to preliminary theory of different solve optimization problems under software engineering domain Covers heuristic as well as meta-heuristic algorithms designed to provide better and optimized solutions Illustrates applications including software requirement prioritization, software cost estimation, reliability assessment, software defect prediction, and more Highlights swarm intelligence-based optimization solutions for software testing and reliability problems
This new volume explores the computational intelligence techniques necessary to carry out different software engineering tasks. Software undergoes various stages before deployment, such as requirements elicitation, software designing, software project planning, software coding, and software testing and maintenance. Every stage is bundled with a number of tasks or activities to be performed. Due to the large and complex nature of software, these tasks can become costly and error prone. This volume aims to help meet these challenges by presenting new research and practical applications in intelligent techniques in the field of software engineering. Computational Intelligence Applications for Software Engineering Problems discusses techniques and presents case studies to solve engineering challenges using machine learning, deep learning, fuzzy-logic-based computation, statistical modeling, invasive weed meta-heuristic algorithms, artificial intelligence, the DevOps model, time series forecasting models, and more.
This new volume explores the computational intelligence techniques necessary to carry out different software engineering tasks. Software undergoes various stages before deployment, such as requirements elicitation, software designing, software project planning, software coding, and software testing and maintenance. Every stage is bundled with a number of tasks or activities to be performed. Due to the large and complex nature of software, these tasks can become costly and error prone. This volume aims to help meet these challenges by presenting new research and practical applications in intelligent techniques in the field of software engineering. Computational Intelligence Applications for Software Engineering Problems discusses techniques and presents case studies to solve engineering challenges using machine learning, deep learning, fuzzy-logic-based computation, statistical modeling, invasive weed meta-heuristic algorithms, artificial intelligence, the DevOps model, time series forecasting models, and more.
"This book provides an overview of useful techniques in artificial intelligence for future software development along with critical assessment for further advancement"--Provided by publisher.
The field of computational intelligence has grown tremendously over that past five years, thanks to evolving soft computing and artificial intelligent methodologies, tools and techniques for envisaging the essence of intelligence embedded in real life observations. Consequently, scientists have been able to explain and understand real life processes and practices which previously often remain unexplored by virtue of their underlying imprecision, uncertainties and redundancies, and the unavailability of appropriate methods for describing the incompleteness and vagueness of information represented. With the advent of the field of computational intelligence, researchers are now able to explore and unearth the intelligence, otherwise insurmountable, embedded in the systems under consideration. Computational Intelligence is now not limited to only specific computational fields, it has made inroads in signal processing, smart manufacturing, predictive control, robot navigation, smart cities, and sensor design to name a few. Recent Trends in Computational Intelligence Enabled Research: Theoretical Foundations and Applications explores the use of this computational paradigm across a wide range of applied domains which handle meaningful information. Chapters investigate a broad spectrum of the applications of computational intelligence across different platforms and disciplines, expanding our knowledge base of various research initiatives in this direction. This volume aims to bring together researchers, engineers, developers and practitioners from academia and industry working in all major areas and interdisciplinary areas of computational intelligence, communication systems, computer networks, and soft computing. - Provides insights into the theory, algorithms, implementation, and application of computational intelligence techniques - Covers a wide range of applications of deep learning across various domains which are researching the applications of computational intelligence - Investigates novel techniques and reviews the state-of-the-art in the areas of machine learning, computer vision, soft computing techniques
The development of computational intelligence (CI) systems was inspired by observable and imitable aspects of intelligent activity of human being and nature. The essence of the systems based on computational intelligence is to process and interpret data of various nature so that that CI is strictly connected with the increase of available data as well as capabilities of their processing, mutually supportive factors. Developed theories of computational intelligence were quickly applied in many fields of engineering, data analysis, forecasting, biomedicine and others. They are used in images and sounds processing and identifying, signals processing, multidimensional data visualization, steering of objects, analysis of lexicographic data, requesting systems in banking, diagnostic systems, expert systems and many other practical implementations. This book consists of 16 contributed chapters by subject experts who are specialized in the various topics addressed in this book. The special chapters have been brought out in the broad areas of Control Systems, Power Electronics, Computer Science, Information Technology, modeling and engineering applications. Special importance was given to chapters offering practical solutions and novel methods for the recent research problems in the main areas of this book, viz. Control Systems, Modeling, Computer Science, IT and engineering applications. This book will serve as a reference book for graduate students and researchers with a basic knowledge of control theory, computer science and soft-computing techniques. The resulting design procedures are emphasized using Matlab/Simulink software.
In modern science and engineering, laboratory experiments are replaced by high fidelity and computationally expensive simulations. Using such simulations reduces costs and shortens development times but introduces new challenges to design optimization process. Examples of such challenges include limited computational resource for simulation runs, complicated response surface of the simulation inputs-outputs, and etc. Under such difficulties, classical optimization and analysis methods may perform poorly. This motivates the application of computational intelligence methods such as evolutionary algorithms, neural networks and fuzzy logic, which often perform well in such settings. This is the first book to introduce the emerging field of computational intelligence in expensive optimization problems. Topics covered include: dedicated implementations of evolutionary algorithms, neural networks and fuzzy logic. reduction of expensive evaluations (modelling, variable-fidelity, fitness inheritance), frameworks for optimization (model management, complexity control, model selection), parallelization of algorithms (implementation issues on clusters, grids, parallel machines), incorporation of expert systems and human-system interface, single and multiobjective algorithms, data mining and statistical analysis, analysis of real-world cases (such as multidisciplinary design optimization). The edited book provides both theoretical treatments and real-world insights gained by experience, all contributed by leading researchers in the respective fields. As such, it is a comprehensive reference for researchers, practitioners, and advanced-level students interested in both the theory and practice of using computational intelligence for expensive optimization problems.
"This book explores the complex world of computational intelligence, which utilizes computational methodologies such as fuzzy logic systems, neural networks, and evolutionary computation for the purpose of managing and using data effectively to address complicated real-world problems"--
In recent years the applications of advanced information technologies in the field of transportation have affected both road infrastructures and vehicle technologies. The development of advanced transport telematics systems and the implementation of a new generation of technological options in the transport environment have had a significant impact on improved traffic management, efficiency and safety. This volume contains contributions from scientific and academic centres which have been active in this field of research and provides an overview of applications of AI technology in the field of traffic control and management. The topics covered are: -- current status of AI in transport -- AI applications in traffic engineering -- in-vehicle AI