Download Free Computational Geosciences With Mathematica Book in PDF and EPUB Free Download. You can read online Computational Geosciences With Mathematica and write the review.

Computational Geosciences with Mathematica is the only book written by a geologist specifically to show geologists and geoscientists how to use Mathematica to formulate and solve problems. It spans a broad range of geologic and mathematical topics, which are drawn from the author's extensive experience in research, consulting, and teaching. The reference and text leads readers step-by-step through geologic applications such as custom graphics programming, data input and output, linear and differential equations, linear and nonlinear regression, Monte Carlo simulation, time series and image analysis, and the visualization and analysis of geologic surfaces. It is packed with actual Mathematica output and includes boxed Computer Notes with tips and exploration suggestions.
Computational Geosciences with Mathematica is the only book written by a geologist specifically to show geologists and geoscientists how to use Mathematica to formulate and solve problems. It spans a broad range of geologic and mathematical topics, which are drawn from the author's extensive experience in research, consulting, and teaching. The reference and text leads readers step-by-step through geologic applications such as custom graphics programming, data input and output, linear and differential equations, linear and nonlinear regression, Monte Carlo simulation, time series and image analysis, and the visualization and analysis of geologic surfaces. It is packed with actual Mathematica output and includes boxed Computer Notes with tips and exploration suggestions.
This book showcases powerful new hybrid methods that combine numerical and symbolic algorithms. Hybrid algorithm research is currently one of the most promising directions in the context of geosciences mathematics and computer mathematics in general. One important topic addressed here with a broad range of applications is the solution of multivariate polynomial systems by means of resultants and Groebner bases. But that’s barely the beginning, as the authors proceed to discuss genetic algorithms, integer programming, symbolic regression, parallel computing, and many other topics. The book is strictly goal-oriented, focusing on the solution of fundamental problems in the geosciences, such as positioning and point cloud problems. As such, at no point does it discuss purely theoretical mathematics. "The book delivers hybrid symbolic-numeric solutions, which are a large and growing area at the boundary of mathematics and computer science." Dr. Daniel Li chtbau
Shows geologists and geoscientists how to use Mathematica to formulate and solve problems. Leads step-by-step through geologic applications such as custom graphics programming, data input and output, linear and differential equations, linear and nonlinear regression, Monte Carlo simulation, time series and image analysis, and the visualization and analysis of geologic surfaces. Includes Mathematica output and boxed Computer Notes with tips and exploration suggestions. The accompanying CD-ROM contains notebooks of all text and graphics, plus an appendix on color graphics and specialized functions.
MATLAB® is used in a wide range of geoscientific applications, e.g. for image processing in remote sensing, for creating and processing digital elevation models, and for analyzing time series. This book introduces readers to MATLAB-based data analysis methods used in the geosciences, including basic statistics for univariate, bivariate and multivariate datasets, time-series analysis, signal processing, the analysis of spatial and directional data, and image analysis. The revised and updated Fifth Edition includes seven new sections, and the majority of the chapters have been rewritten and significantly expanded. New sections include error analysis, the problem of classical linear regression of log-transformed data, aligning stratigraphic sequences, the Normalized Difference Vegetation Index, Aitchison’s log-ratio transformation, graphical representation of spherical data, and statistics of spherical data. The book also includes numerous examples demonstrating how MATLAB can be used on datasets from the earth sciences. The supplementary electronic material (available online through SpringerLink) contains recipes that include all the MATLAB commands featured in the book and the sample data.
MATLAB® is used in a wide range of applications in geosciences, such as image processing in remote sensing, generation and processing of digital elevation models and the analysis of time series. This book introduces methods of data analysis in geosciences using MATLAB such as basic statistics for univariate, bivariate and multivariate datasets, jackknife and bootstrap resampling schemes, processing of digital elevation models, gridding and contouring, geostatistics and kriging, processing and georeferencing of satellite images, digitizing from the screen, linear and nonlinear time-series analysis and the application of linear time-invariant and adaptive filters. The revised and updated Second Edition includes new subchapters on windowed Blackman-Tukey, Lomb-Scargle and Wavelet powerspectral analysis, statistical analysis of point distributions and digital elevation models, and a full new chapter on the statistical analysis of directional data. The text includes a brief description of each method and numerous examples demonstrating how MATLAB can be used on data sets from earth sciences. All MATLAB recipes can be easily modified in order to analyse the reader's own data sets.
Ore extraction through surface and underground mining continues to involve deeper excavations in more complex rock mass conditions. Communities and infrastructure are increasingly exposed to rock slope hazards as they expand further into rugged mountainous terrains. Volume 1 presents papers describing new technologies, ideas and insights concerning fundamental rock mechanics, while the second volume comprises a collection of rock engineering case histories relevant to the major themes of the symposium: rock slope hazards, geotechnical infrastructure, surface and underground mining, and petroleum exploitation.
Frontiers in Offshore Geotechnics III comprises the contributions presented at the Third International Symposium on Frontiers in Offshore Geotechnics (ISFOG, Oslo, Norway, 10-12 June 2015), organised by the Norwegian Geotechnical Institute (NGI). The papers address current and emerging geotechnical engineering challenges facing those working in off
Our daily universe is rough and infinitely diverse. The fractal approach clarifies and orders these disparities. It helps us to envisage new explanations of geographical phenomena, which are, however, considered as definitely understood. Written for use by geographers and researchers from similar disciplines, such as ecologists, economists, historians and sociologists, this book presents the algorithms best adapted to the phenomena encountered, and proposes case studies illustrating their applications in concrete situations. An appendix is also provided that develops programs written in Mathematica. Contents 1. A Fractal World. 2. Auto-similar and Self-affine Fractals. 3. From the Fractal Dimension to Multifractal Spectrums. 4. Calculation and Interpretation of Fractal Dimensions. 5. The Fractal Dimensions of Rank-size Distributions. 6. Calculation and Interpretation of Multifractal Spectrums. 7. Geographical Explanation of Fractal Forms and Dynamics. 8. Using Complexity Theory to Explain a Fractal World. 9. Land-use Planning and Managing a Fractal Environment.
Written 10 years after the publication of the first edition, this updated edition of Real-Time Environmental Monitoring: Sensors and Systems introduces the fundamentals of environmental monitoring based on electronic sensors, instruments, systems, and software that allow continuous and long-term ecological and environmental data collection. It accomplishes two objectives: explains how to use sensors for building more complex instruments, systems, and databases, and introduces a variety of sensors and systems employed to measure environmental variables in air, water, soils, vegetation canopies, and wildlife observation and tracking. This second edition is thoroughly updated in every aspect of technology and data, and each theoretical chapter is taught parallel with a hands-on application lab manual. Emphasizes real-time monitoring as an emerging area for environmental assessment and compliance and covers the fundamentals on how to develop sensors and systems Presents several entirely new topics not featured in the first edition, including remote sensing and GIS, machine learning, weather radar and satellites, groundwater monitoring, spatial analysis, and habitat monitoring Includes applications to many environmental and ecological systems Uses a practical, hands-on approach with the addition of an accompanying lab manual, which students can use to deepen their understanding, based on the author’s 40 years of academic experience Intended for upper-level undergraduate and graduate students, taking courses in civil and environmental engineering, electrical engineering, mechanical engineering, geosciences, and environmental sciences, as well as professionals working in environmental services, and researchers and academics in engineering.