Download Free Computational Gasdynamics Book in PDF and EPUB Free Download. You can read online Computational Gasdynamics and write the review.

Numerical methods are indispensable tools in the analysis of complex fluid flows. This book focuses on computational techniques for high-speed gas flows, especially gas flows containing shocks and other steep gradients. The book decomposes complicated numerical methods into simple modular parts, showing how each part fits and how each method relates to or differs from others. The text begins with a review of gasdynamics and computational techniques. Next come basic principles of computational gasdynamics. The last two parts cover basic techniques and advanced techniques. Senior and graduate level students, especially in aerospace engineering, as well as researchers and practising engineers, will find a wealth of invaluable information on high-speed gas flows in this text.
Emphasis of this text is on the basic assumptions and the formulation of the theory of compressible flow as well as on the methods of solving problems. Published by Science Press, Beijing, distributed by VNR in the US. Annotation copyrighted by Book News, Inc., Portland, OR
This book gives an introduction to the theoretical and computational fluid dynamics of a compressible fluid. It focuses on the basic assumptions and the formulation of the theory of compressible flow as well as on the methods of solving problems.
We are delighted to present this book which contains the Proceedings of the Fifth International Conference on Computational Fluid Dynamics (ICCFD5), held in Seoul, Korea from July 7 through 11, 2008. The ICCFD series has established itself as the leading international conference series for scientists, mathematicians, and engineers specialized in the computation of fluid flow. In ICCFD5, 5 Invited Lectures and 3 Keynote Lectures were delivered by renowned researchers in the areas of innovative modeling of flow physics, innovative algorithm development for flow simulation, optimization and control, and advanced multidisciplinary - plications. There were a total of 198 contributed abstracts submitted from 25 countries. The executive committee consisting of C. H. Bruneau (France), J. J. Chattot (USA), D. Kwak (USA), N. Satofuka (Japan), and myself, was responsible for selection of papers. Each of the members had a separate subcommittee to carry out the evaluation. As a result of this careful peer review process, 138 papers were accepted for oral presentation and 28 for poster presentation. Among them, 5 (3 oral and 2 poster presentation) papers were withdrawn and 10 (4 oral and 6 poster presentation) papers were not presented. The conference was attended by 201 delegates from 23 countries. The technical aspects of the conference were highly beneficial and informative, while the non-technical aspects were fully enjoyable and memorable. In this book, 3 invited lectures and 1 keynote lecture appear first. Then 99 c- tributed papers are grouped under 21 subject titles which are in alphabetical order.
The book gives the reader the basis for understanding the way numerical schemes achieve accurate and stable simulations of physical phenomena. It is based on the finite-difference method and simple problems that allow also the analytic solutions to be worked out. ODEs as well as hyperbolic, parabolic and elliptic types are treated. The book builds on simple model equations and, pedagogically, on a host of problems given together with their solutions.
This book is a brief introduction to the fundamental concepts of computational fluid dynamics (CFD). It is addressed to beginners, and presents the ABCs or bare essentials of CFD in their simplest and most transparent form. The approach taken is to describe the principal analytical tools required, including truncation-error and stability analyses, followed by the basic elements or building blocks of CFD, which are numerical methods for treating sources, diffusion, convection, and pressure waves. Finally, it is shown how those ingredients may be combined to obtain self-contained numerical methods for solving the full equations of fluid dynamics. The book should be suitable for self-study, as a textbook for CFD short courses, and as a supplement to more comprehensive CFD and fluid dynamics texts.
Heat transfer and fluid flow issues are of great significance and this state-of-the-art edited book with reference to new and innovative numerical methods will make a contribution for researchers in academia and research organizations, as well as industrial scientists and college students. The book provides comprehensive chapters on research and developments in emerging topics in computational methods, e.g., the finite volume method, finite element method as well as turbulent flow computational methods. Fundamentals of the numerical methods, comparison of various higher-order schemes for convection-diffusion terms, turbulence modeling, the pressure-velocity coupling, mesh generation and the handling of arbitrary geometries are presented. Results from engineering applications are provided. Chapters have been co-authored by eminent researchers.
This book offers a compact primer on advanced numerical flux functions in computational fluid dynamics (CFD). It comprehensively introduces readers to methods used at the forefront of compressible flow simulation research. Further, it provides a comparative evaluation of the methods discussed, helping readers select the best numerical flux function for their specific needs. The first two chapters of the book reviews finite volume methods and numerical functions, before discussing issues commonly encountered in connection with each. The third and fourth chapter, respectively, address numerical flux functions for ideal gases and more complex fluid flow cases— multiphase flows, supercritical fluids and magnetohydrodynamics. In closing, the book highlights methods that provide high levels of accuracy. The concise content provides an overview of recent advances in CFD methods for shockwaves. Further, it presents the author’s insights into the advantages and disadvantages of each method, helping readers implement the numerical methods in their own research.
This up-to-date book gives an account of the present state of the art of numerical methods employed in computational fluid dynamics. The underlying numerical principles are treated in some detail, using elementary methods. The author gives many pointers to the current literature, facilitating further study. This book will become the standard reference for CFD for the next 20 years.