Download Free Computational Economics A Perspective From Computational Intelligence Book in PDF and EPUB Free Download. You can read online Computational Economics A Perspective From Computational Intelligence and write the review.

"This book identifies the economic as well as financial problems that may be solved efficiently with computational methods and explains why those problems should best be solved with computational methods"--Provided by publisher.
This book aims to answer two questions that are fundamental to the study of agent-based economic models: what is agent-based computational economics and why do we need agent-based economic modelling of economy? This book provides a review of the development of agent-based computational economics (ACE) from a perspective on how artificial economic agents are designed under the influences of complex sciences, experimental economics, artificial intelligence, evolutionary biology, psychology, anthropology and neuroscience. This book begins with a historical review of ACE by tracing its origins. From a modelling viewpoint, ACE brings truly decentralized procedures into market analysis, from a single market to the whole economy. This book also reviews how experimental economics and artificial intelligence have shaped the development of ACE. For the former, the book discusses how ACE models can be used to analyse the economic consequences of cognitive capacity, personality and cultural inheritance. For the latter, the book covers the various tools used to construct artificial adaptive agents, including reinforcement learning, fuzzy decision rules, neural networks, and evolutionary computation. This book will be of interest to graduate students researching computational economics, experimental economics, behavioural economics, and research methodology.
A timely investigation of the potential economic effects, both realized and unrealized, of artificial intelligence within the United States healthcare system. In sweeping conversations about the impact of artificial intelligence on many sectors of the economy, healthcare has received relatively little attention. Yet it seems unlikely that an industry that represents nearly one-fifth of the economy could escape the efficiency and cost-driven disruptions of AI. The Economics of Artificial Intelligence: Health Care Challenges brings together contributions from health economists, physicians, philosophers, and scholars in law, public health, and machine learning to identify the primary barriers to entry of AI in the healthcare sector. Across original papers and in wide-ranging responses, the contributors analyze barriers of four types: incentives, management, data availability, and regulation. They also suggest that AI has the potential to improve outcomes and lower costs. Understanding both the benefits of and barriers to AI adoption is essential for designing policies that will affect the evolution of the healthcare system.
Economic Modeling Using Artificial Intelligence Methods examines the application of artificial intelligence methods to model economic data. Traditionally, economic modeling has been modeled in the linear domain where the principles of superposition are valid. The application of artificial intelligence for economic modeling allows for a flexible multi-order non-linear modeling. In addition, game theory has largely been applied in economic modeling. However, the inherent limitation of game theory when dealing with many player games encourages the use of multi-agent systems for modeling economic phenomena. The artificial intelligence techniques used to model economic data include: multi-layer perceptron neural networks radial basis functions support vector machines rough sets genetic algorithm particle swarm optimization simulated annealing multi-agent system incremental learning fuzzy networks Signal processing techniques are explored to analyze economic data, and these techniques are the time domain methods, time-frequency domain methods and fractals dimension approaches. Interesting economic problems such as causality versus correlation, simulating the stock market, modeling and controling inflation, option pricing, modeling economic growth as well as portfolio optimization are examined. The relationship between economic dependency and interstate conflict is explored, and knowledge on how economics is useful to foster peace – and vice versa – is investigated. Economic Modeling Using Artificial Intelligence Methods deals with the issue of causality in the non-linear domain and applies the automatic relevance determination, the evidence framework, Bayesian approach and Granger causality to understand causality and correlation. Economic Modeling Using Artificial Intelligence Methods makes an important contribution to the area of econometrics, and is a valuable source of reference for graduate students, researchers and financial practitioners.
This book shows digital economy has become one of the most sought out solutions to sustainable development and economic growth of nations. This book discusses the implications of both artificial intelligence and computational intelligence in the digital economy providing a holistic view on AI education, economics, finance, sustainability, ethics, governance, cybersecurity, blockchain, and knowledge management. Unlike other books, this book brings together two important areas, intelligence systems and big data in the digital economy, with special attention given to the opportunities, challenges, for education, business growth, and economic progression of nations. The chapters hereby focus on how societies can take advantage and manage data, as well as the limitations they face due to the complexity of resources in the form of digital data and the intelligence which will support economists, financial managers, engineers, ICT specialists, digital managers, data managers, policymakers, regulators, researchers, academics, students, economic development strategies, and the efforts made by the UN towards achieving their sustainability goals.
Simulation has become a tool difficult to substitute in many scientific areas like manufacturing, medicine, telecommunications, games, etc. Finance is one of such areas where simulation is a commonly used tool; for example, we can find Monte Carlo simulation in many financial applications like market risk analysis, portfolio optimization, credit risk related applications, etc. Simulation in Computational Finance and Economics: Tools and Emerging Applications presents a thorough collection of works, covering several rich and highly productive areas of research including Risk Management, Agent-Based Simulation, and Payment Methods and Systems, topics that have found new motivations after the strong recession experienced in the last few years. Despite the fact that simulation is widely accepted as a prominent tool, dealing with a simulation-based project requires specific management abilities of the researchers. Economic researchers will find an excellent reference to introduce them to the computational simulation models. The works presented in this book can be used as an inspiration for economic researchers interested in creating their own computational models in their respective fields.
This book aims to answer two questions that are fundamental to the study of agent-based economic models: what is agent-based computational economics and why do we need agent-based economic modelling of economy? This book provides a review of the development of agent-based computational economics (ACE) from a perspective on how artificial economic agents are designed under the influences of complex sciences, experimental economics, artificial intelligence, evolutionary biology, psychology, anthropology and neuroscience. This book begins with a historical review of ACE by tracing its origins. From a modelling viewpoint, ACE brings truly decentralized procedures into market analysis, from a single market to the whole economy. This book also reviews how experimental economics and artificial intelligence have shaped the development of ACE. For the former, the book discusses how ACE models can be used to analyse the economic consequences of cognitive capacity, personality and cultural inheritance. For the latter, the book covers the various tools used to construct artificial adaptive agents, including reinforcement learning, fuzzy decision rules, neural networks, and evolutionary computation. This book will be of interest to graduate students researching computational economics, experimental economics, behavioural economics, and research methodology.
The explosive growth in computational power over the past several decades offers new tools and opportunities for economists. This handbook volume surveys recent research on Agent-based Computational Economics (ACE), the computational study of economic processes modeled as dynamic systems of interacting agents. Empirical referents for "agents" in ACE models can range from individuals or social groups with learning capabilities to physical world features with no cognitive function. Topics covered include: learning; empirical validation; network economics; social dynamics; financial markets; innovation and technological change; organizations; market design; automated markets and trading agents; political economy; social-ecological systems; computational laboratory development; and general methodological issues.*Every volume contains contributions from leading researchers*Each Handbook presents an accurate, self-contained survey of a particular topic *The series provides comprehensive and accessible surveys
This book focuses on computational intelligence techniques and their applications — fast-growing and promising research topics that have drawn a great deal of attention from researchers over the years. It brings together many different aspects of the current research on intelligence technologies such as neural networks, support vector machines, fuzzy logic and evolutionary computation, and covers a wide range of applications from pattern recognition and system modeling, to intelligent control problems and biomedical applications. Fundamental concepts and essential analysis of various computational techniques are presented to offer a systematic and effective tool for better treatment of different applications, and simulation and experimental results are included to illustrate the design procedure and the effectiveness of the approaches./a
Provides an integrated introduction to artificial intelligence. Develops AI representation schemes and describes their uses for diverse applications, from autonomous robots to diagnostic assistants to infobots. DLC: Artificial intelligence.