Download Free Computational Discovery Of Scientific Knowledge Book in PDF and EPUB Free Download. You can read online Computational Discovery Of Scientific Knowledge and write the review.

This survey provides an introduction to computational approaches to the discovery of communicable scientific knowledge and details recent advances. It is partly inspired by the contributions of the International Symposium on Computational Discovery of Communicable Knowledge, held in Stanford, CA, USA in March 2001, a number of additional invited contributions provide coverage of recent research in computational discovery.
This survey provides an introduction to computational approaches to the discovery of communicable scientific knowledge and details recent advances. It is partly inspired by the contributions of the International Symposium on Computational Discovery of Communicable Knowledge, held in Stanford, CA, USA in March 2001, a number of additional invited contributions provide coverage of recent research in computational discovery.
Scientific discovery is often regarded as romantic and creative--and hence unanalyzable--whereas the everyday process of verifying discoveries is sober and more suited to analysis. Yet this fascinating exploration of how scientific work proceeds argues that however sudden the moment of discovery may seem, the discovery process can be described and modeled. Using the methods and concepts of contemporary information-processing psychology (or cognitive science) the authors develop a series of artificial-intelligence programs that can simulate the human thought processes used to discover scientific laws. The programs--BACON, DALTON, GLAUBER, and STAHL--are all largely data-driven, that is, when presented with series of chemical or physical measurements they search for uniformities and linking elements, generating and checking hypotheses and creating new concepts as they go along. Scientific Discovery examines the nature of scientific research and reviews the arguments for and against a normative theory of discovery; describes the evolution of the BACON programs, which discover quantitative empirical laws and invent new concepts; presents programs that discover laws in qualitative and quantitative data; and ties the results together, suggesting how a combined and extended program might find research problems, invent new instruments, and invent appropriate problem representations. Numerous prominent historical examples of discoveries from physics and chemistry are used as tests for the programs and anchor the discussion concretely in the history of science.
By applying research in artificial intelligence to problems in the philosophy of science, Paul Thagard develops an exciting new approach to the study of scientific reasoning. This approach uses computational ideas to shed light on how scientific theories are discovered, evaluated, and used in explanations. Thagard describes a detailed computational model of problem solving and discovery that provides a conceptually rich yet rigorous alternative to accounts of scientific knowledge based on formal logic, and he uses it to illuminate such topics as the nature of concepts, hypothesis formation, analogy, and theory justification.
One of the pathways by which the scientific community confirms the validity of a new scientific discovery is by repeating the research that produced it. When a scientific effort fails to independently confirm the computations or results of a previous study, some fear that it may be a symptom of a lack of rigor in science, while others argue that such an observed inconsistency can be an important precursor to new discovery. Concerns about reproducibility and replicability have been expressed in both scientific and popular media. As these concerns came to light, Congress requested that the National Academies of Sciences, Engineering, and Medicine conduct a study to assess the extent of issues related to reproducibility and replicability and to offer recommendations for improving rigor and transparency in scientific research. Reproducibility and Replicability in Science defines reproducibility and replicability and examines the factors that may lead to non-reproducibility and non-replicability in research. Unlike the typical expectation of reproducibility between two computations, expectations about replicability are more nuanced, and in some cases a lack of replicability can aid the process of scientific discovery. This report provides recommendations to researchers, academic institutions, journals, and funders on steps they can take to improve reproducibility and replicability in science.
Mohamed Medhat Gaber “It is not my aim to surprise or shock you – but the simplest way I can summarise is to say that there are now in the world machines that think, that learn and that create. Moreover, their ability to do these things is going to increase rapidly until – in a visible future – the range of problems they can handle will be coextensive with the range to which the human mind has been applied” by Herbert A. Simon (1916-2001) 1Overview This book suits both graduate students and researchers with a focus on discovering knowledge from scienti c data. The use of computational power for data analysis and knowledge discovery in scienti c disciplines has found its roots with the re- lution of high-performance computing systems. Computational science in physics, chemistry, and biology represents the rst step towards automation of data analysis tasks. The rational behind the developmentof computationalscience in different - eas was automating mathematical operations performed in those areas. There was no attention paid to the scienti c discovery process. Automated Scienti c Disc- ery (ASD) [1–3] represents the second natural step. ASD attempted to automate the process of theory discovery supported by studies in philosophy of science and cognitive sciences. Although early research articles have shown great successes, the area has not evolved due to many reasons. The most important reason was the lack of interaction between scientists and the automating systems.
This volume offers selected papers exploring issues arising from scientific discovery in the social sciences. It features a range of disciplines including behavioural sciences, computer science, finance, and statistics with an emphasis on philosophy. The first of the three parts examines methods of social scientific discovery. Chapters investigate the nature of causal analysis, philosophical issues around scale development in behavioural science research, imagination in social scientific practice, and relationships between paradigms of inquiry and scientific fraud. The next part considers the practice of social science discovery. Chapters discuss the lack of genuine scientific discovery in finance where hypotheses concern the cheapness of securities, the logic of scientific discovery in macroeconomics, and the nature of that what discovery with the Solidarity movement as a case study. The final part covers formalising theories in social science. Chapters analyse the abstract model theory of institutions as a way of representing the structure of scientific theories, the semi-automatic generation of cognitive science theories, and computational process models in the social sciences. The volume offers a unique perspective on scientific discovery in the social sciences. It will engage scholars and students with a multidisciplinary interest in the philosophy of science and social science.
Medical practitioners are continuing to advance their knowledge of the latest technologies in order to keep up with the opportunities for faster and more reliable treatments for patients. Advancing Medical Practice through Technology: Applications for Healthcare Delivery, Management, and Quality focuses on the latest medical practices through the utilization of technologies and innovative concepts. This book is an essential reference source for researchers, academics, and industry professionals interested in the latest advancements in the healthcare, biomedicine, and medical communications fields.
This book constitutes the proceedings of the 25th International Conference on Discovery Science, DS 2022, which took place virtually during October 10-12, 2022. The 27 full papers and 12 short papers presented in this volume were carefully reviewed and selected from 59 submissions.
This Handbook offers the first comprehensive reference guide to the interdisciplinary field of abductive cognition, providing readers with extensive information on the process of reasoning to hypotheses in humans, animals, and in computational machines. It highlights the role of abduction in both theory practice: in generating and testing hypotheses and explanatory functions for various purposes and as an educational device. It merges logical, cognitive, epistemological and philosophical perspectives with more practical needs relating to the application of abduction across various disciplines and practices, such as in diagnosis, creative reasoning, scientific discovery, diagrammatic and ignorance-based cognition, and adversarial strategies. It also discusses the inferential role of models in hypothetical reasoning, abduction and creativity, including the process of development, implementation and manipulation for different scientific and technological purposes. Written by a group of internationally renowned experts in philosophy, logic, general epistemology, mathematics, cognitive, and computer science, as well as life sciences, engineering, architecture, and economics, the Handbook of Abductive Cognition offers a unique reference guide for readers approaching the process of reasoning to hypotheses from different perspectives and for various theoretical and practical purposes. Numerous diagrams, schemes and other visual representations are included to promote a better understanding of the relevant concepts and to make concepts highly accessible to an audience of scholars and students with different scientific backgrounds.