Download Free Computational Botany Book in PDF and EPUB Free Download. You can read online Computational Botany and write the review.

This book discusses innovative methods for mining information from images of plants, especially leaves, and highlights the diagnostic features that can be implemented in fully automatic systems for identifying plant species. Adopting a multidisciplinary approach, it explores the problem of plant species identification, covering both the concepts of taxonomy and morphology. It then provides an overview of morphometrics, including the historical background and the main steps in the morphometric analysis of leaves together with a number of applications. The core of the book focuses on novel diagnostic methods for plant species identification developed from a computer scientist’s perspective. It then concludes with a chapter on the characterization of botanists' visions, which highlights important cognitive aspects that can be implemented in a computer system to more accurately replicate the human expert’s fixation process. The book not only represents an authoritative guide to advanced computational tools for plant identification, but provides experts in botany, computer science and pattern recognition with new ideas and challenges. As such it is expected to foster both closer collaborations and further technological developments in the emerging field of automatic plant identification.
This textbook introduces fundamental concepts of bioinformatics and computational biology to the students and researchers in biology, medicine, veterinary science, agriculture, and bioengineering . The respective chapters provide detailed information on biological databases, sequence alignment, molecular evolution, next-generation sequencing, systems biology, and statistical computing using R. The book also presents a case-based discussion on clinical, veterinary, agricultural bioinformatics, and computational bioengineering for application-based learning in the respective fields. Further, it offers readers guidance on reconstructing and analysing biological networks and highlights computational methods used in systems medicine and genome-wide association mapping of diseases. Given its scope, this textbook offers an essential introductory book on bioinformatics and computational biology for undergraduate and graduate students in the life sciences, botany, zoology, physiology, biotechnology, bioinformatics, and genomic science as well as systems biology, bioengineering and the agricultural, and veterinary sciences.
Written with the advanced undergraduate in mind, this book introduces into the field of Bioinformatics. The authors explain the computational and conceptional background to the analysis of large-scale sequence data. Many of the corresponding analysis methods are rooted in evolutionary thinking, which serves as a common thread throughout the book. The focus is on methods of comparative genomics and subjects covered include: alignments, gene finding, phylogeny, and the analysis of single nucleotide polymorphisms (SNPs). The volume contains exercises, questions & answers to selected problems.
Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, Three Volume Set combines elements of computer science, information technology, mathematics, statistics and biotechnology, providing the methodology and in silico solutions to mine biological data and processes. The book covers Theory, Topics and Applications, with a special focus on Integrative –omics and Systems Biology. The theoretical, methodological underpinnings of BCB, including phylogeny are covered, as are more current areas of focus, such as translational bioinformatics, cheminformatics, and environmental informatics. Finally, Applications provide guidance for commonly asked questions. This major reference work spans basic and cutting-edge methodologies authored by leaders in the field, providing an invaluable resource for students, scientists, professionals in research institutes, and a broad swath of researchers in biotechnology and the biomedical and pharmaceutical industries. Brings together information from computer science, information technology, mathematics, statistics and biotechnology Written and reviewed by leading experts in the field, providing a unique and authoritative resource Focuses on the main theoretical and methodological concepts before expanding on specific topics and applications Includes interactive images, multimedia tools and crosslinking to further resources and databases
The assimilation of computational methods into the life sciences has played an important role in advancing biological research. From sequencing genomes to discovering motifs in large collections of functionally equivalent sequences of nucleic acids and proteins, the value of powerful computational tools has become abundantly clear. The Compact Hand
Biology is in the midst of a era yielding many significant discoveries and promising many more. Unique to this era is the exponential growth in the size of information-packed databases. Inspired by a pressing need to analyze that data, Introduction to Computational Biology explores a new area of expertise that emerged from this fertile field- the combination of biological and information sciences. This introduction describes the mathematical structure of biological data, especially from sequences and chromosomes. After a brief survey of molecular biology, it studies restriction maps of DNA, rough landmark maps of the underlying sequences, and clones and clone maps. It examines problems associated with reading DNA sequences and comparing sequences to finding common patterns. The author then considers that statistics of pattern counts in sequences, RNA secondary structure, and the inference of evolutionary history of related sequences. Introduction to Computational Biology exposes the reader to the fascinating structure of biological data and explains how to treat related combinatorial and statistical problems. Written to describe mathematical formulation and development, this book helps set the stage for even more, truly interdisciplinary work in biology.
This proceedings presents recent practical applications of Computational Biology and Bioinformatics. It contains the proceedings of the 9th International Conference on Practical Applications of Computational Biology & Bioinformatics held at University of Salamanca, Spain, at June 3rd-5th, 2015. The International Conference on Practical Applications of Computational Biology & Bioinformatics (PACBB) is an annual international meeting dedicated to emerging and challenging applied research in Bioinformatics and Computational Biology. Biological and biomedical research are increasingly driven by experimental techniques that challenge our ability to analyse, process and extract meaningful knowledge from the underlying data. The impressive capabilities of next generation sequencing technologies, together with novel and ever evolving distinct types of omics data technologies, have put an increasingly complex set of challenges for the growing fields of Bioinformatics and Computational Biology. The analysis of the datasets produced and their integration call for new algorithms and approaches from fields such as Databases, Statistics, Data Mining, Machine Learning, Optimization, Computer Science and Artificial Intelligence. Clearly, Biology is more and more a science of information requiring tools from the computational sciences.
This book: (i) introduces fundamental and applied bioinformatics research in the field of plant life sciences; (ii) enlightens the potential users towards the recent advances in the development and application of novel computational methods available for the analysis and integration of plant -omics data; (iii) highlights relevant databases, softwares, tools and web resources developed till date to make ease of access for researchers working to decipher plant responses towards stresses; and (iv) presents a critical cross-talks on the available high-throughput data in plant research. Therefore, in addition to being a reference for the professional researchers, it is also of great interest to students and their professors. Considering immense significance of plants for all lives on Earth, the major focus of research in plant biology has been to: (a) select plants that best fit the purposes of human, (b) develop crop plants superior in quality, quantity and farming practices when compared to natural (wild) plants, and (c) explore strategies to help plants to adapt biotic and abiotic/environmental stress factors. Accordingly the development of novel techniques and their applications have increased significantly in recent years. In particular, large amount of biological data have emerged from multi-omics approaches aimed at addressing numerous aspects of the plant systems under biotic or abiotic stresses. However, even though the field is evolving at a rapid pace, information on the cross-talks and/or critical digestion of research outcomes in the context of plant bioinformatics is scarce. “Plant Bioinformatics: Decoding the Phyta” is aimed to bridge this gap.
Progress in plant biology relies on the quantification, analysis and mathematical modeling of data over different time and length scales. This book describes common mathematical and computational approaches as well as some carefully chosen case studies that demonstrate the use of these techniques to solve problems at the forefront of plant biology. Each chapter is written by an expert in field with the goal of conveying concepts whilst at the same time providing sufficient background and links to available software for readers to rapidly build their own models and run their own simulations. This book is aimed at postgraduate students and researchers working the field of plant systems biology and synthetic biology, but will also be a useful reference for anyone wanting to get into quantitative plant biology.
A survey of current topics in computational molecular biology. Computational molecular biology, or bioinformatics, draws on the disciplines of biology, mathematics, statistics, physics, chemistry, computer science, and engineering. It provides the computational support for functional genomics, which links the behavior of cells, organisms, and populations to the information encoded in the genomes, as well as for structural genomics. At the heart of all large-scale and high-throughput biotechnologies, it has a growing impact on health and medicine. This survey of computational molecular biology covers traditional topics such as protein structure modeling and sequence alignment, and more recent ones such as expression data analysis and comparative genomics. It combines algorithmic, statistical, database, and AI-based methods for studying biological problems. The book also contains an introductory chapter, as well as one on general statistical modeling and computational techniques in molecular biology. Each chapter presents a self-contained review of a specific subject. Not for sale in China, including Hong Kong.