Download Free Computation Of Shortest Path Problem In A Network With Sv Trapezoidal Neutrosophic Numbers Book in PDF and EPUB Free Download. You can read online Computation Of Shortest Path Problem In A Network With Sv Trapezoidal Neutrosophic Numbers and write the review.

In this work, a neutrosophic network method is proposed for finding the shortest path length with single valued trapezoidal neutrosophic number. The proposed algorithm gives the shortest path length using score function from source node to destination node. Here the weights of the edges are considered to be single valued trapezoidal neutrosophic number. Finally, a numerical example is used to illustrate the efficiency of the proposed approach.
In this research paper, a new approach is proposed for computing the shortest path length from source node to destination node in a neutrosophic environment. The edges of the network are assigned by trapezoidal fuzzy neutrosophic numbers. A numerical example is provided to show the performance of the proposed approach.
In this paper, we develop a new approach to deal with neutrosophic shortest path problem in a network in which each edge weight is represented as trapezoidal fuzzy neutrosophic number. The proposed algorithm gives the shortest path length using signed distance from source node to destination node. Finally, an illustrative example is provided to show the applicability and effectiveness of the proposed approach.
Neutrosophic set theory provides a new tool to handle the uncertainties in shortest path problem (SPP). This paper introduces the SPP from a source node to a destination node on a neutrosophic graph in which a positive neutrosophic number is assigned to each edge as its edge cost. We define this problem as neutrosophic shortest path problem (NSSPP). A simple algorithm is also introduced to solve the NSSPP. The proposed algorithm finds the neutrosophic shortest path (NSSP) and its corresponding neutrosophic shortest path length (NSSPL) between source node and destination node.
In this paper we studied the network with Single Valued Trapezoidal Neutrosophic (SVTN) numbers. We propose an algorithm by transforming single valued trapezoidal neutrosophic (SVTN) numbersinto normalized single valued trapezoidal neutrosophic (NSVTN) numbers and obtain an optimal value of the short path problem using defuzzification and scoring function. Finally, a numerical example is used to illustrate the efficiency of the proposed approach.
Real-life decision-making problem has been demonstrated to cover the indeterminacy through single valued neutrosophic set. It is the extension of interval valued neutrosophic set. Most of the problems of real life involve some sort of uncertainty in it among which, one of the famous problem is finding a shortest path of the network. In this paper, a new score function is proposed for interval valued neutrosophic numbers and SPP is solved using interval valued neutrosophic numbers. Additionally, novel algorithms are proposed to find the neutrosophic shortest path by considering interval valued neutrosophic number, trapezoidal and triangular interval valued neutrosophic numbers for the length of the path in a network with illustrative example. Further, comparative analysis has been done for the proposed algorithm with the existing method with the shortcoming and advantage of the proposed method and it shows the effectiveness of the proposed algorithm.
Graph theory is a specific concept that has numerous applications throughout many industries. Despite the advancement of this technique, graph theory can still yield ambiguous and imprecise results. In order to cut down on these indeterminate factors, neutrosophic logic has emerged as an applicable solution that is gaining significant attention in solving many real-life decision-making problems that involve uncertainty, impreciseness, vagueness, incompleteness, inconsistency, and indeterminacy. However, empirical research on this specific graph set is lacking. Neutrosophic Graph Theory and Algorithms is a collection of innovative research on the methods and applications of neutrosophic sets and logic within various fields including systems analysis, economics, and transportation. While highlighting topics including linear programming, decision-making methods, and homomorphism, this book is ideally designed for programmers, researchers, data scientists, mathematicians, designers, educators, researchers, academicians, and students seeking current research on the various methods and applications of graph theory.
In this paper, we first introduce single valued trapezoidal neutrosophic (SVTN) numbers with their properties. We then define some operations and distances of the SVTN-numbers. Based on these new operations, we also define some aggregation operators, including SVTN-ordered weighted geometric operator, SVTN-hybrid geometric operator, SVTN-ordered weighted arithmetic operator and SVTN-hybrid arithmetic operator. We then examine the properties of these SVTN-information aggregation operators. By using the SVTN-weighted geometric operator and SVTN-hybrid geometric operator, we also define a multi attribute group decision making method, called SVTN-group decision making method. We finally give an illustrative example and comparative analysis to verify the developed method and to demonstrate its practicality and effectiveness.
This book offers a comprehensive guide to the use of neutrosophic sets in multiple criteria decision making problems. It shows how neutrosophic sets, which have been developed as an extension of fuzzy and paraconsistent logic, can help in dealing with certain types of uncertainty that classical methods could not cope with. The chapters, written by well-known researchers, report on cutting-edge methodologies they have been developing and testing on a variety of engineering problems. The book is unique in its kind as it reports for the first time and in a comprehensive manner on the joint use of neutrosophic sets together with existing decision making methods to solve multi-criteria decision-making problems, as well as other engineering problems that are complex, hard to model and/or include incomplete and vague data. By providing new ideas, suggestions and directions for the solution of complex problems in engineering and decision making, it represents an excellent guide for researchers, lecturers and postgraduate students pursuing research on neutrosophic decision making, and more in general in the area of industrial and management engineering.
This fourteenth volume of Collected Papers is an eclectic tome of 87 papers in Neutrosophics and other fields, such as mathematics, fuzzy sets, intuitionistic fuzzy sets, picture fuzzy sets, information fusion, robotics, statistics, or extenics, comprising 936 pages, published between 2008-2022 in different scientific journals or currently in press, by the author alone or in collaboration with the following 99 co-authors (alphabetically ordered) from 26 countries: Ahmed B. Al-Nafee, Adesina Abdul Akeem Agboola, Akbar Rezaei, Shariful Alam, Marina Alonso, Fran Andujar, Toshinori Asai, Assia Bakali, Azmat Hussain, Daniela Baran, Bijan Davvaz, Bilal Hadjadji, Carlos Díaz Bohorquez, Robert N. Boyd, M. Caldas, Cenap Özel, Pankaj Chauhan, Victor Christianto, Salvador Coll, Shyamal Dalapati, Irfan Deli, Balasubramanian Elavarasan, Fahad Alsharari, Yonfei Feng, Daniela Gîfu, Rafael Rojas Gualdrón, Haipeng Wang, Hemant Kumar Gianey, Noel Batista Hernández, Abdel-Nasser Hussein, Ibrahim M. Hezam, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Muthusamy Karthika, Nour Eldeen M. Khalifa, Madad Khan, Kifayat Ullah, Valeri Kroumov, Tapan Kumar Roy, Deepesh Kunwar, Le Thi Nhung, Pedro López, Mai Mohamed, Manh Van Vu, Miguel A. Quiroz-Martínez, Marcel Migdalovici, Kritika Mishra, Mohamed Abdel-Basset, Mohamed Talea, Mohammad Hamidi, Mohammed Alshumrani, Mohamed Loey, Muhammad Akram, Muhammad Shabir, Mumtaz Ali, Nassim Abbas, Munazza Naz, Ngan Thi Roan, Nguyen Xuan Thao, Rishwanth Mani Parimala, Ion Pătrașcu, Surapati Pramanik, Quek Shio Gai, Qiang Guo, Rajab Ali Borzooei, Nimitha Rajesh, Jesús Estupiñan Ricardo, Juan Miguel Martínez Rubio, Saeed Mirvakili, Arsham Borumand Saeid, Saeid Jafari, Said Broumi, Ahmed A. Salama, Nirmala Sawan, Gheorghe Săvoiu, Ganeshsree Selvachandran, Seok-Zun Song, Shahzaib Ashraf, Jayant Singh, Rajesh Singh, Son Hoang Le, Tahir Mahmood, Kenta Takaya, Mirela Teodorescu, Ramalingam Udhayakumar, Maikel Y. Leyva Vázquez, V. Venkateswara Rao, Luige Vlădăreanu, Victor Vlădăreanu, Gabriela Vlădeanu, Michael Voskoglou, Yaser Saber, Yong Deng, You He, Youcef Chibani, Young Bae Jun, Wadei F. Al-Omeri, Hongbo Wang, Zayen Azzouz Omar.