Download Free Comprehensive Remote Sensing Book in PDF and EPUB Free Download. You can read online Comprehensive Remote Sensing and write the review.

Comprehensive Remote Sensing, Nine Volume Set covers all aspects of the topic, with each volume edited by well-known scientists and contributed to by frontier researchers. It is a comprehensive resource that will benefit both students and researchers who want to further their understanding in this discipline. The field of remote sensing has quadrupled in size in the past two decades, and increasingly draws in individuals working in a diverse set of disciplines ranging from geographers, oceanographers, and meteorologists, to physicists and computer scientists. Researchers from a variety of backgrounds are now accessing remote sensing data, creating an urgent need for a one-stop reference work that can comprehensively document the development of remote sensing, from the basic principles, modeling and practical algorithms, to various applications. Fully comprehensive coverage of this rapidly growing discipline, giving readers a detailed overview of all aspects of Remote Sensing principles and applications Contains ‘Layered content’, with each article beginning with the basics and then moving on to more complex concepts Ideal for advanced undergraduates and academic researchers Includes case studies that illustrate the practical application of remote sensing principles, further enhancing understanding
Advanced Remote Sensing is an application-based reference that provides a single source of mathematical concepts necessary for remote sensing data gathering and assimilation. It presents state-of-the-art techniques for estimating land surface variables from a variety of data types, including optical sensors such as RADAR and LIDAR. Scientists in a number of different fields including geography, geology, atmospheric science, environmental science, planetary science and ecology will have access to critically-important data extraction techniques and their virtually unlimited applications. While rigorous enough for the most experienced of scientists, the techniques are well designed and integrated, making the book's content intuitive, clearly presented, and practical in its implementation. - Comprehensive overview of various practical methods and algorithms - Detailed description of the principles and procedures of the state-of-the-art algorithms - Real-world case studies open several chapters - More than 500 full-color figures and tables - Edited by top remote sensing experts with contributions from authors across the geosciences
Processing the vast amounts of data on the Earth's land surface environment generated by NASA's and other international satellite programs is a significant challenge. Filling a gap between the theoretical, physically-based modelling and specific applications, this in-depth study presents practical quantitative algorithms for estimating various land surface variables from remotely sensed observations. A concise review of the basic principles of optical remote sensing as well as practical algorithms for estimating land surface variables quantitatively from remotely sensed observations. Emphasizes both the basic principles of optical remote sensing and practical algorithms for estimating land surface variables quantitatively from remotely sensed observations Presents the current physical understanding of remote sensing as a system with a focus on radiative transfer modelling of the atmosphere, canopy, soil and snow Gathers the state of the art quantitative algorithms for sensor calibration, atmospheric and topographic correction, estimation of a variety of biophysical and geoph ysical variables, and four-dimensional data assimilation
DEEP LEARNING FOR THE EARTH SCIENCES Explore this insightful treatment of deep learning in the field of earth sciences, from four leading voices Deep learning is a fundamental technique in modern Artificial Intelligence and is being applied to disciplines across the scientific spectrum; earth science is no exception. Yet, the link between deep learning and Earth sciences has only recently entered academic curricula and thus has not yet proliferated. Deep Learning for the Earth Sciences delivers a unique perspective and treatment of the concepts, skills, and practices necessary to quickly become familiar with the application of deep learning techniques to the Earth sciences. The book prepares readers to be ready to use the technologies and principles described in their own research. The distinguished editors have also included resources that explain and provide new ideas and recommendations for new research especially useful to those involved in advanced research education or those seeking PhD thesis orientations. Readers will also benefit from the inclusion of: An introduction to deep learning for classification purposes, including advances in image segmentation and encoding priors, anomaly detection and target detection, and domain adaptation An exploration of learning representations and unsupervised deep learning, including deep learning image fusion, image retrieval, and matching and co-registration Practical discussions of regression, fitting, parameter retrieval, forecasting and interpolation An examination of physics-aware deep learning models, including emulation of complex codes and model parametrizations Perfect for PhD students and researchers in the fields of geosciences, image processing, remote sensing, electrical engineering and computer science, and machine learning, Deep Learning for the Earth Sciences will also earn a place in the libraries of machine learning and pattern recognition researchers, engineers, and scientists.
Filling the need for a comprehensive book that covers both theory and application, Remote Sensing of Land Use and Land Cover: Principles and Applications provides a synopsis of how remote sensing can be used for land-cover characterization, mapping, and monitoring from the local to the global scale. With contributions by leading scientists from aro
This book has been replaced by Introduction to Remote Sensing, Sixth Edition, 978-1-4625-4940-5.
A quantitative yet accessible introduction to remote sensing techniques, this new edition covers a broad spectrum of Earth science applications.
This comprehensive introductory text presents a timely overview of the most widely used forms of remote sensing imagery and their applications in plant sciences, hydrology, earth sciences, and land-use analysis.
This volume comprises an outstanding variety of chapters on Earth Observation based time series analyses, undertaken to reveal past and current land surface dynamics for large areas. What exactly are time series of Earth Observation data? Which sensors are available to generate real time series? How can they be processed to reveal their valuable hidden information? Which challenges are encountered on the way and which pre-processing is needed? And last but not least: which processes can be observed? How are large regions of our planet changing over time and which dynamics and trends are visible? These and many other questions are answered within this book “Remote Sensing Time Series Analyses – Revealing Land Surface Dynamics”. Internationally renowned experts from Europe, the USA and China present their exciting findings based on the exploitation of satellite data archives from well-known sensors such as AVHRR, MODIS, Landsat, ENVISAT, ERS and METOP amongst others. Selected review and methods chapters provide a good overview over time series processing and the recent advances in the optical and radar domain. A fine selection of application chapters addresses multi-class land cover and land use change at national to continental scale, the derivation of patterns of vegetation phenology, biomass assessments, investigations on snow cover duration and recent dynamics, as well as urban sprawl observed over time.
Highlighting new technologies, Remote Sensing of Natural Resources explores advanced remote sensing systems and algorithms for image processing, enhancement, feature extraction, data fusion, image classification, image-based modeling, image-based sampling design, map accuracy assessment and quality control. It also discusses their applications for