Download Free Composition Of Sea Ice And Its Tensile Strength Book in PDF and EPUB Free Download. You can read online Composition Of Sea Ice And Its Tensile Strength and write the review.

Part of the salts contained in sea water are trapped in sea ice upon freezing. They form liquid and solid inclusions in a systematic pattern. The amount depends upon temperature and salinity. A detailed table of phase relations is given and a general theory is derived to show how the internal cavities may affect the strength of sea ice. The general theory leads to specific models. The principle of ring tensile strength tests is explained and a series for evaluation is given. Test data lead to a substantiation of theoretical principles and to an illustration of several hypotheses concerning the effect of solid salt inclusions upon strength. Observed sea ice phenomena are explained on the basis of internal structure. (Author).
The review discusses the state of thinking of each of the main national groups investigating sea ice and gives an overall appraisal of the field as a whole. Emphasis is placed on (1) the physical basis for interpreting sea ice strength (phase relations, air volume, and structural considerations), (2) theoretical considerations (strength models, air bubbles and salt reinforcement, and interrelations between growth conditions and strength), (3) experimental results (tensile, flexural, shear, and compressive strength, elastic modulus, shear modulus and Poisson's ratio, time dependent effects, and creep), and (4) plate characteristics. The paper includes a review of problems in sea ice investigations, relates the chemical, crystallographic, mechanical, and physical aspects involved, and concludes by showing how to utilize this knowledge to solve practical problems. (Author).
Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 68. Human activities in the polar regions have undergone incredible changes in this century. Among these changes is the revolution that satellites have brought about in obtaining information concerning polar geophysical processes. Satellites have flown for about three decades, and the polar regions have been the subject of their routine surveillance for more than half that time. Our observations of polar regions have evolved from happenstance ship sightings and isolated harbor icing records to routine global records obtained by those satellites. Thanks to such abundant data, we now know a great deal about the ice-covered seas, which constitute about 10% of the Earth's surface. This explosion of information about sea ice has fascinated scientists for some 20 years. We are now at a point of transition in sea ice studies; we are concerned less about ice itself and more about its role in the climate system. This change in emphasis has been the prime stimulus for this book.