Download Free Components Of Variance Book in PDF and EPUB Free Download. You can read online Components Of Variance and write the review.

WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. ". . .Variance Components is an excellent book. It is organized and well written, and provides many references to a variety of topics. I recommend it to anyone with interest in linear models." —Journal of the American Statistical Association "This book provides a broad coverage of methods for estimating variance components which appeal to students and research workers . . . The authors make an outstanding contribution to teaching and research in the field of variance component estimation." —Mathematical Reviews "The authors have done an excellent job in collecting materials on a broad range of topics. Readers will indeed gain from using this book . . . I must say that the authors have done a commendable job in their scholarly presentation." —Technometrics This book focuses on summarizing the variability of statistical data known as the analysis of variance table. Penned in a readable style, it provides an up-to-date treatment of research in the area. The book begins with the history of analysis of variance and continues with discussions of balanced data, analysis of variance for unbalanced data, predictions of random variables, hierarchical models and Bayesian estimation, binary and discrete data, and the dispersion mean model.
The components of variance is a notion essential to statisticians and quantitative research scientists working in a variety of fields, including the biological, genetic, health, industrial, and psychological sciences. Co-authored by Sir David Cox, the pre-eminent statistician in the field, this book provides in-depth discussions that set forth the essential principles of the subject. It focuses on developing the models that form the basis for detailed analyses as well as on the statistical techniques themselves. The authors include a variety of examples from areas such as clinical trial design, plant and animal breeding, industrial design, and psychometrics.
Variance Components Estimation deals with the evaluation of the variation between observable data or classes of data. This is an up-to-date, comprehensive work that is both theoretical and applied. Topics include ML and REML methods of estimation; Steepest-Acent, Newton-Raphson, scoring, and EM algorithms; MINQUE and MIVQUE, confidence intervals for variance components and their ratios; Bayesian approaches and hierarchical models; mixed models for longitudinal data; repeated measures and multivariate observations; as well as non-linear and generalized linear models with random effects.
Identifying the sources and measuring the impact of haphazard variations are important in any number of research applications, from clinical trials and genetics to industrial design and psychometric testing. Only in very simple situations can such variations be represented effectively by independent, identically distributed random variables or by random sampling from a hypothetical infinite population. Components of Variance illuminates the complexities of the subject, setting forth its principles with focus on both the development of models for detailed analyses and the statistical techniques themselves. The authors first consider balanced and unbalanced situations, then move to the treatment of non-normal data, beginning with the Poisson and binomial models and followed by extensions to survival data and more general situations. In the final chapter, they discuss ways of extending and assessing various models, including the study of exceedances, the use of nonlinear representations, the study of transformations of the response variable, and the detailed examination of the distributional form of the underlying random variables. Careful signposting and numerous examples from genetic data analysis, clinical trial design, longitudinal data analysis, industrial design, and meta-analysis make this book accessible - and valuable - not only to statisticians but to all applied research scientists who use statistical methods.
Summarizes information scattered in the technical literature on a subject too new to be included in most textbooks, but which is of interest to statisticians, and those who use statistics in science and education, at an advanced undergraduate or higher level. Overviews recent research on constructin
Batch Effects and Noise in Microarray Experiments: Sources and Solutions looks at the issue of technical noise and batch effects in microarray studies and illustrates how to alleviate such factors whilst interpreting the relevant biological information. Each chapter focuses on sources of noise and batch effects before starting an experiment, with examples of statistical methods for detecting, measuring, and managing batch effects within and across datasets provided online. Throughout the book the importance of standardization and the value of standard operating procedures in the development of genomics biomarkers is emphasized. Key Features: A thorough introduction to Batch Effects and Noise in Microrarray Experiments. A unique compilation of review and research articles on handling of batch effects and technical and biological noise in microarray data. An extensive overview of current standardization initiatives. All datasets and methods used in the chapters, as well as colour images, are available on www.the-batch-effect-book.org, so that the data can be reproduced. An exciting compilation of state-of-the-art review chapters and latest research results, which will benefit all those involved in the planning, execution, and analysis of gene expression studies.
To provide useful and meaningful information, long-term ecological programs need to implement solid and efficient statistical approaches for collecting and analyzing data. This volume provides rigorous guidance on quantitative issues in monitoring, with contributions from world experts in the field. These experts have extensive experience in teaching fundamental and advanced ideas and methods to natural resource managers, scientists and students. The chapters present a range of tools and approaches, including detailed coverage of variance component estimation and quantitative selection among alternative designs; spatially balanced sampling; sampling strategies integrating design- and model-based approaches; and advanced analytical approaches such as hierarchical and structural equation modelling. Making these tools more accessible to ecologists and other monitoring practitioners across numerous disciplines, this is a valuable resource for any professional whose work deals with ecological monitoring. Supplementary example software code is available online at www.cambridge.org/9780521191548.
This textbook provides a wide-ranging introduction to the use of linear models in analyzing data. The author's emphasis is on providing a unified treatment of the analysis of variance models and regression models by presenting a vector space and projections approach to the subject. Every chapter comes with numerous exercises and examples, which will make it ideal for a graduate-level course on this subject.
Wiley Series in Probability and Statistics A modern perspective on mixed models The availability of powerful computing methods in recent decades has thrust linear and nonlinear mixed models into the mainstream of statistical application. This volume offers a modern perspective on generalized, linear, and mixed models, presenting a unified and accessible treatment of the newest statistical methods for analyzing correlated, nonnormally distributed data. As a follow-up to Searle's classic, Linear Models, and Variance Components by Searle, Casella, and McCulloch, this new work progresses from the basic one-way classification to generalized linear mixed models. A variety of statistical methods are explained and illustrated, with an emphasis on maximum likelihood and restricted maximum likelihood. An invaluable resource for applied statisticians and industrial practitioners, as well as students interested in the latest results, Generalized, Linear, and Mixed Models features: * A review of the basics of linear models and linear mixed models * Descriptions of models for nonnormal data, including generalized linear and nonlinear models * Analysis and illustration of techniques for a variety of real data sets * Information on the accommodation of longitudinal data using these models * Coverage of the prediction of realized values of random effects * A discussion of the impact of computing issues on mixed models