Download Free Complex Abelian Varieties And Theta Functions Book in PDF and EPUB Free Download. You can read online Complex Abelian Varieties And Theta Functions and write the review.

Abelian varieties are a natural generalization of elliptic curves to higher dimensions, whose geometry and classification are as rich in elegant results as in the one-dimensional ease. The use of theta functions, particularly since Mumford's work, has been an important tool in the study of abelian varieties and invertible sheaves on them. Also, abelian varieties play a significant role in the geometric approach to modern algebraic number theory. In this book, Kempf has focused on the analytic aspects of the geometry of abelian varieties, rather than taking the alternative algebraic or arithmetic points of view. His purpose is to provide an introduction to complex analytic geometry. Thus, he uses Hermitian geometry as much as possible. One distinguishing feature of Kempf's presentation is the systematic use of Mumford's theta group. This allows him to give precise results about the projective ideal of an abelian variety. In its detailed discussion of the cohomology of invertible sheaves, the book incorporates material previously found only in research articles. Also, several examples where abelian varieties arise in various branches of geometry are given as a conclusion of the book.
Presents a modern treatment of the theory of theta functions in the context of algebraic geometry.
Reciprocity laws of various kinds play a central role in number theory. In the easiest case, one obtains a transparent formulation by means of roots of unity, which are special values of exponential functions. A similar theory can be developed for special values of elliptic or elliptic modular functions, and is called complex multiplication of such functions. In 1900 Hilbert proposed the generalization of these as the twelfth of his famous problems. In this book, Goro Shimura provides the most comprehensive generalizations of this type by stating several reciprocity laws in terms of abelian varieties, theta functions, and modular functions of several variables, including Siegel modular functions. This subject is closely connected with the zeta function of an abelian variety, which is also covered as a main theme in the book. The third topic explored by Shimura is the various algebraic relations among the periods of abelian integrals. The investigation of such algebraicity is relatively new, but has attracted the interest of increasingly many researchers. Many of the topics discussed in this book have not been covered before. In particular, this is the first book in which the topics of various algebraic relations among the periods of abelian integrals, as well as the special values of theta and Siegel modular functions, are treated extensively.
Abelian varieties are special examples of projective varieties. As such theycan be described by a set of homogeneous polynomial equations. The theory ofabelian varieties originated in the beginning of the ninetheenth centrury with the work of Abel and Jacobi. The subject of this book is the theory of abelian varieties over the field of complex numbers, and it covers the main results of the theory, both classic and recent, in modern language. It is intended to give a comprehensive introduction to the field, but also to serve as a reference. The focal topics are the projective embeddings of an abelian variety, their equations and geometric properties. Moreover several moduli spaces of abelian varieties with additional structure are constructed. Some special results onJacobians and Prym varieties allow applications to the theory of algebraic curves. The main tools for the proofs are the theta group of a line bundle, introduced by Mumford, and the characteristics, to be associated to any nondegenerate line bundle. They are a direct generalization of the classical notion of characteristics of theta functions.
This graduate-level textbook introduces the classical theory of complex tori and abelian varieties, while presenting in parallel more modern aspects of complex algebraic and analytic geometry. Beginning with complex elliptic curves, the book moves on to the higher-dimensional case, giving characterizations from different points of view of those complex tori which are abelian varieties, i.e., those that can be holomorphically embedded in a projective space. This allows, on the one hand, for illuminating the computations of nineteenth-century mathematicians, and on the other, familiarizing readers with more recent theories. Complex tori are ideal in this respect: One can perform "hands-on" computations without the theory being totally trivial. Standard theorems about abelian varieties are proved, and moduli spaces are discussed. Recent results on the geometry and topology of some subvarieties of a complex torus are also included. The book contains numerous examples and exercises. It is a very good starting point for studying algebraic geometry, suitable for graduate students and researchers interested in algebra and algebraic geometry. Information for our distributors: SMF members are entitled to AMS member discounts.
The study of abelian manifolds forms a natural generalization of the theory of elliptic functions, that is, of doubly periodic functions of one complex variable. When an abelian manifold is embedded in a projective space it is termed an abelian variety in an algebraic geometrical sense. This introduction presupposes little more than a basic course in complex variables. The notes contain all the material on abelian manifolds needed for application to geometry and number theory, although they do not contain an exposition of either application. Some geometrical results are included however.
This book presents an elementary and self-contained approach to Abelian varieties, a subject that plays a central role in algebraic and analytic geometry, number theory, and complex analysis. The book is based on notes from a course given at Concordia University and would be useful for independent study or as a textbook for graduate courses in complex analysis, Riemann surfaces, number theory, or analytic geometry. Murty works mostly over the complex numbers, discussing the theorem of Abel-Jacobi and Lefschetz's theorem on projective embeddings. After presenting some examples, Murty touches on Abelian varieties over number fields, as well as the conjecture of Tate (Faltings's theorem) and its relation to Mordell's conjecture. References are provided to guide the reader in further study.
Classical algebraic geometry, inseparably connected with the names of Abel, Riemann, Weierstrass, Poincaré, Clebsch, Jacobi and other outstanding mathematicians of the last century, was mainly an analytical theory. In our century it has been enriched by the methods and ideas of topology, commutative algebra and Grothendieck's schemes seemed to have replaced once and forever the somewhat naive language of classical algebraic geometry. This book contains more than its modest title suggests. Written in 1897, its scope was as broad as it could possibly be, namely to cover the whole of algebraic geometry, and associated theories. The subject is discussed by Baker in terms of transcendental functions, and in particular theta functions. Many of the ideas put forward are of continuing relevance today, and some of the most exciting ideas from theoretical physics draw on work presented here.
Historical introduction. The Jacobian inversion problem Periodic functions of several complex variables Riemann matrices. Jacobian (intermediate) functions Construction of Jacobian functions of a given type. Theta functions and Abelian functions. Abelian and Picard manifolds Appendix A. Skew-symmetric determinants Appendix B. Divisors of analytic functions Appendix C. A summary of the most important formulas