Download Free Compendium Of Surface And Interface Analysis Book in PDF and EPUB Free Download. You can read online Compendium Of Surface And Interface Analysis and write the review.

This book concisely illustrates the techniques of major surface analysis and their applications to a few key examples. Surfaces play crucial roles in various interfacial processes, and their electronic/geometric structures rule the physical/chemical properties. In the last several decades, various techniques for surface analysis have been developed in conjunction with advances in optics, electronics, and quantum beams. This book provides a useful resource for a wide range of scientists and engineers from students to professionals in understanding the main points of each technique, such as principles, capabilities and requirements, at a glance. It is a contemporary encyclopedia for selecting the appropriate method depending on the reader's purpose.
The original Handbook of Surface and Interface Analysis: Methods for Problem-Solving was based on the authors' firm belief that characterization and analysis of surfaces should be conducted in the context of problem solving and not be based on the capabilities of any individual technique. Now, a decade later, trends in science and technology appear
Serving as a general introduction to surface and interface science, this book focuses on basic concepts rather than specific details, and on intuitive understanding rather than merely learning facts. The text reflects the fact that the physics and chemistry of surfaces is a diverse area of research that involves classical scientific and engineering disciplines. As such, it discusses fundamental subjects, such as thermodynamics of interfaces, as well as applied topics including wetting, friction, and lubrication. Following an introduction to the most important techniques and methods, readers will be able to apply simple models to their own scientific problems. Furthermore, manifold high end technological applications are shown together with the basic scientific treatment, for example AFM, surface technology, biotechnology, microelectronics, and biomaterials. The book is written with advanced students of chemistry, physics, materials science, chemical engineering and related subjects who have a basic knowledge of natural sciences and mathematics in mind. In addition, scientists and engineers who are not yet specialists in surface science but want to learn more about this important subject will equally benefit.
Surveying and comparing all techniques relevant for practical applications in surface and thin film analysis, this second edition of a bestseller is a vital guide to this hot topic in nano- and surface technology. This new book has been revised and updated and is divided into four parts - electron, ion, and photon detection, as well as scanning probe microscopy. New chapters have been added to cover such techniques as SNOM, FIM, atom probe (AP),and sum frequency generation (SFG). Appendices with a summary and comparison of techniques and a list of equipment suppliers make this book a rapid reference for materials scientists, analytical chemists, and those working in the biotechnological industry. From a Review of the First Edition (edited by Bubert and Jenett) "... a useful resource..." (Journal of the American Chemical Society)
This guide to the use of surface analysis techniques, now in its second edition, has expanded to include more techniques, current applications and updated references. It outlines the application of surface analysis techniques to a broad range of studies in materials science and engineering. The book consists of three parts: an extensive introduction to the concepts of surface structure and composition, a techniques section describing 19 techniques and a section on applications. This book is aimed at industrial scientists and engineers in research and development. The level and content of this book make it ideal as a course text for senior undergraduate and postgraduate students in materials science, materials engineering, physics, chemistry and metallurgy.
A broad, almost encyclopedic overview of spectroscopic and other analytical techniques useful for investigations of phase boundaries in electrochemistry is presented. The analysis of electrochemical interfaces and interphases on a microscopic, even molecular level, is of central importance for an improved understanding of the structure and dynamics of these phase boundaries. The gained knowledge will be needed for improvements of methods and applications reaching from electrocatalysis, electrochemical energy conversion, biocompatibility of metals, corrosion protection to galvanic surface treatment and finishing. The book provides an overview as complete as possible and enables the reader to choose methods most suitable for tackling his particular task. It is nevertheless compact and does not flood the reader with the details of review papers.
This book is t~e fifth in aseries of scientific textbooks designed to cover advances in selected research fields from a basic and general view point. The reader is taken carefully but rapidly through the introductory material in order that t~e significance of recent developments can be understood with only limited initial knowledge. The inclusion in the Appendix of the abstracts of many of the more important papers in the field provides further assistance for the non-specialist, and acts as aspringboard to supplementary reading for those who wish to consult the original liter ature. Surface analysis has been the subject of numerous books and review articles, and the fundamental scientific principles of t~e more popular techniques are now reasonably weIl established. This book is concerned with the very powerful techniques of Auger electron and X-ray photoelectron spectroscopy (AES and XPS), with an emphasis on how they may be performed as part of a modern analytical facility. Since the development of AES and XPS in the late 1960s and early 1970s there have been great strides forward in the sensitivities and resolutions of the instrumentation. Simultaneously, these spectroscopies have undergone a veritable explosion, both in their acceptance alongside more routine ana1ytical techniques and in the range of problems and materials to which they are applied. As a result, many researchers in industry and in academia now come into contact with AES and XPS not as specialists, but as users.
This work examines the characterization and understanding of the outer layers of substrates. From the basic principles of surface analysis, the book considers the various techniques used to analyze surfaces and the theory required to understand the results.
Solid Surfaces, Interfaces and Thin Films examines both experimental and theoretical aspects of surface, interface and thin film physics. Coverage of magnetic thin films has been expanded, and now includes giant magnetoresistance and the spin-transfer torque mechanism.
This exciting new handbook investigates the characterization of surfaces. It emphasizes experimental techniques for imaging of solid surfaces and theoretical strategies for visualization of surfaces, areas in which rapid progress is currently being made. This comprehensive, unique volume is the ideal reference for researchers needing quick access to the latest developments in the field and an excellent introduction to students who want to acquaint themselves with the behavior of electrons, atoms, molecules, and thin-films at surfaces. It's all here, under one cover! The Handbook of Surface Imaging and Visualization is filled with sixty-four of the most powerful techniques for characterization of surfaces and interfaces in the material sciences, medicine, biology, geology, chemistry, and physics. Each discussion is easy to understand, succinct, yet incredibly informative. Data illustrate present research in each area of study. A wide variety of the latest experimental and theoretical approaches are included with both practical and fundamental objectives in mind. Key references are included for the reader's convenience for locating the most recent and useful work on each topic. Readers are encouraged to contact the authors or consult the references for additional information. This is the best ready reference available today. It is a perfect source book or supplemental text on the subject.