Download Free Comparison Of Experimental And Analytical Tooth Bending Stress Of Aerospace Spiral Bevel Gears Book in PDF and EPUB Free Download. You can read online Comparison Of Experimental And Analytical Tooth Bending Stress Of Aerospace Spiral Bevel Gears and write the review.

An experimental study to investigate the bending stress in aerospace-quality spiral bevel gears was performed. Tests were conducted in the NASA Lewis Spiral Bevel Gear Test Facility. Multiple teeth on the spiral bevel pinion were instrumented with strain gages and tests were conducted from static (slow roll) to 14400 RPM at power levels to 540kW (720 hp). Effects of changing speed and load on the bending stress were measured. Experimental results are compared to those found by three-dimensional finite element analysis.
An experimental study to investigate the bending stress in aerospace-quality spiral bevel gears was performed. Tests were conducted in the NASA Lewis Spiral Bevel Gear Test Facility. Multiple teeth on the spiral bevel pinion were instrumented with strain gages and tests were conducted from static (slow roll) to 14400 RPM at power levels to 540kW (720 hp). Effects of changing speed and load on the bending stress were measured. Experimental results are compared to those found by three-dimensional finite element analysis. Handschuh, Robert F. and Bibel, George D. Glenn Research Center NASA/TM-1999-208903, NAS 1.15:208903, E-11365-1, ARL-TR-1891
An experimental comparison of face-milled and face-hobbed spiral bevel gears was accomplished. The two differently manufactured spiral bevel gear types were tested in a closed-loop facility at NASA Glenn Research Center. Strain, vibration, and noise testing were completed at various levels of rotational speed and load. Tests were conducted from static (slow-roll) to 12600 rpm and up to 269 N.m (2380 in.lb) pinion speed and load conditions. The tests indicated that the maximum stress recorded at the root locations had nearly the same values, however the stress distribution was different from the toe to the heel. Also. the alternating stress measured was higher for the face-milled pinion than that attained for the face-bobbed pinion (larger minimum stress). The noise and vibration results indicated that the levels measured for the face-bobbed components were less than those attained for the face-milled gears tested.
Spiral bevel gears are an important drive system components of rotorcraft (helicopters) currently in use. In this application the spiral bevel gears are required to transmit very high torque at high rotational speed. Available experimental data on the operational characteristics for thermal and structural behavior is relatively small in comparison to that found for parallel axis gears. An ongoing test program has been in place at NASA Glenn Research Center over the last ten years to investigate their operational behavior at operating conditions found in aerospace applications. This paper will summarize the results of the tests conducted on face-milled spiral bevel gears. The data from the pinion member (temperature and stress) were taken at conditions from slow-roll to 14400 rpm and up to 537 kW (720 hp). The results have shown that operating temperature is affected by the location of the lubricating jet with respect to the point it is injected and the operating conditions that are imposed. Also the stress measured from slow-roll to very high rotational speed, at various torque levels, indicated little dynamic affect over the rotational speeds tested.
The first Workshop on Mechanisms, Transmissions and Applications -- MeTrApp-2011 was organized by the Mechatronics Department at the Mechanical Engineering Faculty, “Politehnica” University of Timisoara, Romania, under the patronage of the IFToMM Technical Committees Linkages and Mechanical Controls and Micromachines. The workshop brought together researchers and students who work in disciplines associated with mechanisms science and offered a great opportunity for scientists from all over the world to present their achievements, exchange innovative ideas and create solid international links, setting the trend for future developments in this important and creative field. The topics treated in this volume are mechanisms and machine design, mechanical transmissions, mechatronic and biomechanic applications, computational and experimental methods, history of mechanism and machine science and teaching methods.
This is the first book of a series that will focus on MMS (Mechanism and Machine Science). This book also presents IFToMM, the International Federation on the Promotion of MMS and its activity. This volume contains contributions by IFToMM officers who are Chairs of member organizations (MOs), permanent commissions (PCs), and technical committees (TCs), who have reported their experiences and views toward the future of IFToMM and MMS. The book is composed of three parts: the first with general considerations by high-standing IFToMM persons, the second chapter with views by the chairs of PCs and TCs as dealing with specific subject areas, and the third one with reports by the chairs of MOs as presenting experiences and challenges in national and territory communities. This book will be of interest to a wide public who wish to know the status and trends in MMS both at international level through IFToMM and in national/local frames through the leading actors of activities. In addition, the book can be considered also a fruitful source to find out “who’s who” in MMS, historical backgrounds and trends in MMS developments, as well as for challenges and problems in future activity by IFToMM community and in MMS at large.