Download Free Comparing Speckle Imaging Methods Book in PDF and EPUB Free Download. You can read online Comparing Speckle Imaging Methods and write the review.

Strain imaging (also known as speckle-tracking echocardiography or STE) is a rapidly growing, affordable, and versatile cardiac imaging technology of great interest to clinicians in both inpatient and outpatient settings. ASE's Comprehensive Strain Imaging is the first reference designed to help you master a wide range of strain imaging/STE applications, including screening, diagnosis, treatment, and follow up. Written and edited by a team of international experts from the American Society of Echocardiography (ASE), this new resource provides the information you need to optimize imaging acquisition and analysis using this important new echocardiography method. - Covers step-by-step techniques on how to use strain imaging with expert tips on nuances, pitfalls, and clinical decision making. - Discusses the growing range of strain imaging applications for assessing diastolic function, atrial function, heart failure, arterial disease, valve disease, hypertrophy, and other common cardiovascular conditions. - Provides up-to-date information on screening and follow up of patients who receive cardio-toxic oncologic agents during cancer treatment and evaluation of patients with cardiomyopathy, heart failure, arterial disease, valve disease, implantable pacemakers, pericardial disease, hypertrophy, ischemic disease, and chest radiation. - Includes more than 150 images using the latest strain imaging technology, as well as videos that depict evaluation and monitoring of patients with cardiomyopathies. - Addresses future applications, including elastography.
Ultrasound imaging technology has experienced a dramatic change in the last 30 years. Because of its non-invasive nature and continuing improvements in image quality, ultrasound imaging is progressively achieving an important role in the assessment and characterization of cardiovascular imaging. Speckle is inherent in ultrasound imaging giving rise to a granular appearance instead of homogeneous, flat shades of gray, as is visible and as such, speckle can severely compromise interpretation of ultrasound images, particularly in discrimination of small structures. On the other hand, speckle can be used in the detection of time varying phenomena, or tracking tissue motion. The objective of this book is to provide a reference edited volume covering the whole spectrum of speckle phenomena, theoretical background and modelling, algorithms and selected applications in cardiovascular ultrasound imaging and video processing and analysis. The book is organized under the following four parts, Part I: Introduction to Speckle Noise; Part II: Speckle Filtering; Part III: Speckle Tracking; Part IV: Selected Applications in Cardiovascular Imaging.
This the fourth volume of six from the Annual Conference of the Society for Experimental Mechanics, 2010, brings together 58 chapters on Application of Imaging Techniques to Mechanics of Materials and Structure. It presents findings from experimental and computational investigations involving a range of imaging techniques including Recovery of 3D Stress Intensity Factors From Surface Full-field Measurements, Identification of Cohesive-zone Laws From Crack-tip Deformation Fields, Application of High Speed Digital Image Correlation for Vibration Mode Shape Analysis, Characterization of Aluminum Alloys Using a 3D Full Field Measurement, and Low Strain Rate Measurements on Explosives Using DIC.
This thesis presents research on novel X-ray imaging methods that improve the study of specimens with small density differences, revealing their inner structure and density distribution. Exploiting the phase shift of X-rays in a material can significantly increase the image contrast compared to conventional absorption imaging. This thesis provides a practical guide to X-ray phase-contrast imaging with a strong focus on X-ray speckle-based imaging, the most recently developed phase-sensitive method. X-ray speckle-based imaging only requires a piece of abrasive paper in addition to the standard X-ray imaging setup. Its simplicity and robustness combined with the compatibility with laboratory X-ray sources, make it an ideal candidate for wide user uptake in a range of fields. An in-depth overview of the state of the art of X-ray speckle-based imaging and its latest developments is given in this thesis. It, furthermore, explores a broad range of applications, from X-ray optics characterisation, to biomedical imaging for 3D virtual histology and geological studies of volcanic rocks, demonstrating is promising potential. Moreover, the speckle-based technique is placed in the context of other phase-sensitive X-ray imaging methods to assist in the choice of a suitable method, hence serving as a guide and reference work for future users.
Based upon the research they have conducted over the past decade in the field of denoising processes for medical ultrasonic imaging, in this book, the authors systematically present despeckling methods for medical ultrasonic images. Firstly, the respective methods are reviewed and divided into five categories. Secondly, after introducing some basic mathematical tools such as wavelet and shearlet transforms, the authors highlight five recently developed despeckling methods for medical ultrasonic images. In turn, simulations and experiments for clinical ultrasonic images are presented for each method, and comparison studies with other well-known existing methods are conducted, showing the effectiveness and superiority of the new methods. Students and researchers in the field of signal and image processing, as well as medical professionals whose work involves ultrasonic diagnosis, will greatly benefit from this book. Familiarizing them with the state of the art in despeckling methods for medical ultrasonic images, it offers a useful reference guide for their study and research work.
Imaging Methods for Novel Materials and Challenging Applications, Volume 3: Proceedings of the 2012 Annual Conference on Experimental and Applied Mechanics, the third volume of seven from the Conference, brings together 62 contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Experimental and Applied Mechanics, including papers on: Role of optical interferometry in advancement of material characterization Three-dimensional imaging and volumetric correlation Digital holography and experimental mechanics Digital image correlation Metrology and displacement measurement at different scales Optical methods for dynamic tests Optical methods for and with MEMS and NEMS Thermomechanics and infrared imaging Imaging methods applied to biomaterials and soft materials Applied photoelasticity Optical measurement systems using polarized light Hybrid imaging techniques Contouring of surfaces Novel optical techniques
Light Scattering Technology for Food Property, Quality and Safety Assessment discusses the development and application of various light scattering techniques for measuring the structural and rheological properties of food, evaluating composition and quality attributes, and detecting pathogens in food. The first four chapters cover basic concepts, principles, theories, and modeling of light transfer in food and biological materials. Chapters 5 and 6 describe parameter estimation methods and basic techniques for determining optical absorption and scattering properties of food products. Chapter 7 discusses the spatially-resolved measurement technique for determining the optical properties of food and biological materials, whereas Chapter 8 focuses on the time-resolved spectroscopic technique for measuring optical properties and quality or maturity of horticultural products. Chapter 9 examines practical light scattering techniques for nondestructive quality assessment of fruits and vegetables. Chapter 10 presents the theory of light transfer in meat muscle and the measurement of optical properties for determining the postmortem condition and textural properties of muscle foods and meat analogs. Chapter 11 covers the applications of spatially-resolved light scattering techniques for assessing quality and safety of animal products. Chapter 12 looks into light scattering for milk and dairy processing. Chapter 13 examines the applications of dynamic light scattering for measuring the microstructure and rheological properties of food. Chapter 14 shows the applications of a biospeckle technique for assessing the quality and condition of fruits and vegetables. Chapter 15 provides a detailed description of Raman scattering spectroscopic and imaging techniques in food quality and safety assessment. Chapter 16, the final chapter, focuses on applications of light scattering techniques for the detection of food-borne pathogens.
Hybrid Intelligent Techniques for Pattern Analysis and Understanding outlines the latest research on the development and application of synergistic approaches to pattern analysis in real-world scenarios. An invaluable resource for lecturers, researchers, and graduates students in computer science and engineering, this book covers a diverse range of hybrid intelligent techniques, including image segmentation, character recognition, human behavioral analysis, hyperspectral data processing, and medical image analysis.
Developments in technologies have evolved in a much wider use of technology throughout science, government, and business; resulting in the expansion of geographic information systems. GIS is the academic study and practice of presenting geographical data through a system designed to capture, store, analyze, and manage geographic information. Geographic Information Systems: Concepts, Methodologies, Tools, and Applications is a collection of knowledge on the latest advancements and research of geographic information systems. This book aims to be useful for academics and practitioners involved in geographical data.
Ultrasound Elastography for Biomedical Applications and Medicine Ivan Z. Nenadic, Matthew W. Urban, James F. Greenleaf, Mayo Clinic Ultrasound Research Laboratory, Mayo Clinic College of Medicine, USA Jean-Luc Gennisson, Miguel Bernal, Mickael Tanter, Institut Langevin – Ondes et Images, ESPCI ParisTech CNRS, France Covers all major developments and techniques of Ultrasound Elastography and biomedical applications The field of ultrasound elastography has developed various techniques with the potential to diagnose and track the progression of diseases such as breast and thyroid cancer, liver and kidney fibrosis, congestive heart failure, and atherosclerosis. Having emerged in the last decade, ultrasound elastography is a medical imaging modality that can noninvasively measure and map the elastic and viscous properties of soft tissues. Ultrasound Elastography for Biomedical Applications and Medicine covers the basic physics of ultrasound wave propagation and the interaction of ultrasound with various media. The book introduces tissue elastography, covers the history of the field, details the various methods that have been developed by research groups across the world, and describes its novel applications, particularly in shear wave elastography. Key features: Covers all major developments and techniques of ultrasound elastography and biomedical applications. Contributions from the pioneers of the field secure the most complete coverage of ultrasound elastography available. The book is essential reading for researchers and engineers working in ultrasound and elastography, as well as biomedical engineering students and those working in the field of biomechanics.