Download Free Comparing Cell Culture And Mouse Assays For Measuring Infectivity Of Cryptosporidium Book in PDF and EPUB Free Download. You can read online Comparing Cell Culture And Mouse Assays For Measuring Infectivity Of Cryptosporidium and write the review.

Cell culture techniques are routinely used for measuring the infectivity of a wide range of human pathogens. A variety of different cell culture systems and detection methodologies have been applied to Cryptosporidium parvum. However, the correlation between cell culture methods and animal infectivity assays has not been thoroughly investigated. Although many cell culture methods have been developed for C. parvum, it has not been proven that infectivity in cell culture is a good indicator of the ability of oocysts to cause infections in animals. The objective of this research was to compare in-vitro cell culture methods with a mouse assay for measuring infectivity of C. parvum oocysts. The specific objectives were to (1) compare the dose response and sensitivity of cell culture and mouse assays with multiple isolates; (2) compare infectivity methods with oocysts exposed to environmental water samples; (3) determine the reproducibility and variability of the methods; and (4) compare cell culture and animal assays for assessing ozone and UV disinfection.For untreated oocysts, challenge doses were enumerated by flow cytometry. Dose response curves were constructed by regression analysis of oocyst dose against a logistic transformation of the proportional infectivity and the 50% infectious doses for each isolate were calculated by solving the regression for a logit value of zero. Infections in CD-1 mice were detected by microscopy following staining with hematoxylin and eosin. Infection in HCT-8 and Caco-2 cells was detected by C. parvum-specific RT-PCR. In MDCK cells, infection was detected using immunofluorescence. For disinfection studies, oocysts were exposed to UV using a medium-pressure, collimated beam apparatus and inactivation was measured as the difference in ID50 of unexposed and UV-exposed oocysts. Oocysts were exposed to ozone using batch, semi-batch, and single continuously stirred tank reactors at 1, 5, and 15°C.This investigation demonstrated that in-vitro cell culture was equivalent with a mouse assay for measuring infectivity of untreated C. parvum oocysts and should therefore be considered a practical alternative for assessing the potential of oocysts to cause infection. However, the high levels of variability displayed by mouse and cell culture methods indicated that infectivity and disinfection experiments should be limited to discerning relatively large differences. Of the three cell culture assays, the HCT-8/RT-PCR method displayed the closest agreement with the CD-1 mouse assay. C. hominis was infectious in HCT-8 cells but did not infect mice. Similar results were obtained with CD-1 mice and HCT-8 cells for measuring infectivity of oocysts that had been exposed to environmental water for 35 days. There was also very good agreement between HCT-8 cell culture and CD-1 mouse assays for measuring UV inactivation of C. parvum. A medium-pressure UV dosage of 5.6 mJ/cm2 resulted in 2-log10 inactivation. The shapes of ozone inactivation curves were generally the same for mouse and cell culture derived data although the CD-1 mouse assay typically generated 0.5 to 1-log10 higher levels of inactivation than HCT-8 cells. In addition, there was a stimulatory response in oocysts exposed to ozone below 20 mg.min/L when assayed by HCT-8 cell culture. Consequently, further research is necessary to understand the response of oocysts to ozone when inactivation is assessed by cell culture methods. The water industry should adopt in-vitro cell culture as a routine method for measuring the infectivity of waterborne C. parvum and C. hominis oocysts. This project has demonstrated that cell culture has equivalency with the standard CD-1 mouse assay and cell culture assays can be applied to oocysts recovered from water using approved methods. However, there needs to be a thorough, robust, and well-controlled study to compare the various cell culture-based assays for measuring C. parvum and C. hominis infectivity. This evaluation should include inter-laboratory comparisons and round-robin testing. Cell culture-based assays should also be used to assess disinfection of C. hominis isolates. Originally published by AwwaRF for its subscribers in 2004. This publication can also be purchased and downloaded via Pay Per View on Water Intelligence Online - click on the Pay Per View icon below
In the relatively short period since Cryptosporidium was recognised as a human pathogen, and that it could be transmitted in water as well as directly between animals and people, it has been the subject of intense investigations. Its status as an opportunistic pathogen, especially in AIDS patients, and the lack of effective anti-cryptosporidial drugs have served to emphasise the public health importance of this organism. This has to some extent overshadowed the fact that Cryptosporidium is also an important pathogen of domestic animals and wildlife. In recent years, the application of molecular biology and culture techniques have had an enormous impact on our understanding of the aetiological agents of cryptosporidial infections and our ability to study the causative agents in the laboratory. As a consequence, a wealth of information and novel data has been produced during the last 3-4 years, particularly in the areas of taxonomy, biology, pathogenesis, epidemiology - particularly zoonotic and water borne transmission, and treatment.It is thus very timely to bring together in this book the international research community involved to review the major advances in research and identify the important research priorities for the future, thus enabling as wide an audience as possible to benefit from and share in this comprehensive look at Cryptosporidium and cryptosporidiosis.
This new volume on Cryptosporidium and Cryptosporidiosis discusses all relevant aspects of the biology, molecular biology, host-parasite interaction, epidemiology as well as diagnosis and treatment of these widespread parasites. It represents a useful guide for physicians, microbiologists, veterinarians and water professionals seeking advanced knowledge and guidance about these important parasitic pathogens. A section on practical lab procedures discusses step-by-step guidelines for sample preparation and lab procedures. The new book may further serve as a reference work for graduate students in medical and veterinary microbiology.​
This volume reviews the drinking water treatments in which AOPs display a high application potential. Firstly it reveals the typical supply sources and limitations of conventional technologies and critically reviews natural organic matter characterization and removal techniques, focusing mainly on AOP treatments. It then explores using AOPs for simultaneous inactivation/disinfection of several types of microorganisms, including highly resistant Cryptosporidium protozoa. Lastly, it discusses relevant miscellaneous topics, like the most promising AOP solid catalysts, the regime change of Fenton-like processes toward continuous reactors, the application of chemometrics for process optimization, the impact on disinfection byproducts and the tracing of toxicity during AOP treatments. This work is a useful reference for researchers and students involved in water technologies, including analytical and environmental chemistry, chemical and environmental engineering, toxicology, biotechnology, and related fields. It is intended to encourage industrial and public-health scientists and decision-makers to accelerate the application of AOPs as technological alternatives for the improvement of drinking water treatment plants.
This book examines the two major parasite groups that are transmitted via water or foods: the single-celled protozoa, and the helminths: cestodes (tapeworms), nematodes (round worms), and trematodes (flukes). Each chapter covers the biology, mechanisms of pathogenesis, epidemiology, treatment, and inactivation of these parasites. This important new text offers a better understanding of the biology and control of parasitic infections necessary to reduce or eliminate future outbreaks in the U.S. and elsewhere.
Vols. for 1963- include as pt. 2 of the Jan. issue: Medical subject headings.
From the microscopic observation of infection to the widespread application of molecular techniques in taxonomy and epidemiology, to the genome sequencing of two major species and advances in biochemistry, phylogeny, and water treatment, new information on this fascinating genus continues to mount as we discover and utilize the latest scientific te
Wastewater Microbiology focuses on microbial contaminants found in wastewater, methods of detection for these contaminants, and methods of cleansing water of microbial contamination. This classic reference has now been updated to focus more exclusively on issues particular to wastewater, with new information on fecal contamination and new molecular methods. The book features new methods to determine cell viability/activity in environmental samples; a new section on bacterial spores as indicators; new information covering disinfection byproducts, UV disinfection, and photoreactivation; and much more. A PowerPoint of figures from the book is available at ftp://ftp.wiley.com/public/sci_tech_med/wastewater_microbiology.
An intuitively organized and incisive exploration of UV radiation and its modern applications In Photochemical Reactors: Theory, Methods, and Applications of Ultraviolet Radiation, distinguished civil engineer and researcher Dr. Ernest R. Blatchley III delivers a comprehensive exploration of the theory, methods, and contemporary and emerging applications of ultraviolet (UV) radiation. The author describes the fundamentals of the history of photochemistry and photochemical reactions before moving on to consider the dynamic behavior of UV-based reactor systems and the physical concepts that govern natural and man-made sources of UV radiation. The book also covers the numerical and empirical methods used to evaluate photochemical kinetics, photobiological kinetics, and the dynamics of UV photoreactors. Common and emerging applications of UV radiation—like the disinfection of water, wastewater, air, and surfaces—are discussed, and UV-induced transformation processes are also explored. Readers will also find: Thorough introductions to methods and principles that are universal to UV processes, as well as comparisons between those processes Critical explorations of the physics of natural and artificial sources of ultraviolet radiation Practical discussions of modern applications of UV radiation, including the disinfection of water, air, wastewater, and surfaces, as well as the use of UV photoreactors to promote photolysis and photo-initiated, radical-mediated reactions Perfect for UV professionals, academics, and scientists, Photochemical Reactors: Theory, Methods, and Applications of Ultraviolet Radiation will also earn a place in the libraries of professionals working in companies that manufacture UV reactors, as well as engineering consultants with a professional interest in ultraviolet radiation.